Взаимодействие тел. Понятие массы тела.Сила

Определение 1

Взаимодействие в физике - это воздействие частиц или тел друг на друга, приводящее к изменению состояния их движения.

Изменение состояния тел в пространстве

Несмотря на разнообразие воздействий тел друг на друга, в природе имеется лишь четыре типа фундаментальных воздействия:

  • гравитационные;
  • слабые взаимодействия;
  • сильные взаимодействия;
  • электромагнитные взаимодействия.

Любые изменения в природе происходят в результате взаимодействия между телами. Чтобы изменить положение вагона на рельсах, железнодорожники направляют к нему локомотив, который смещает вагон с места и приводит его в состояние движения. Парусник может длительное время стоять у берега, пока не подует попутный ветер, который подействует на его паруса. Колеса игрушечной машины могут вращаться с любой скоростью, но игрушка не изменит своего положения, если под нее не подложить дощечку или линейку. Форму или размер пружины можно изменить, лишь подвесив к ней грузило или потянув рукой за один из ее концов.

Все тела в природе действуют один на другого или непосредственно через физические поля. Если тепловоз действует на вагон и меняет его скорость, то скорость тепловоза при этом также меняется в результате обратного действия вагона. Солнце действует на Землю и тела, удерживая ее на орбите. Но и Земля притягивает Солнце, и в свою очередь меняет его траекторию. Итак, во всех случаях можно говорить лишь о взаимном действие тел - взаимодействие.

При взаимодействии меняются скорости тел или их частей. С другой стороны, взаимодействуя с разными телами, оно по-разному будет изменять свою скорость. Так, парусник может приобрести скорости из-за действия на него ветра. Но такого же результата можно достигнуть, включив двигатель, размещенный на паруснике. Его может сдвинуть с места и катер, действующий на парусник через трос. Чтобы не называть каждый раз все взаимодействующие тела, или тела, которые действуют на данное него, все эти действия объединяют одним понятие силы.

Что такое сила?

Сила, воспринимая его как физическое понятие может быть большей или меньшей, а также учитывая вызванные ею изменения в состоянии тела или его частей.

Определение 2

Сила – это физическая величина, которая характеризуется как действие одного тела на другое.

Действие тепловоза на вагон будет значительно интенсивней, чем действие нескольких грузчиков. Под действием тепловоза вагон быстрее сдвинется с места и начнет двигаться с большей скоростью, чем тогда, когда вагон будут толкать грузчики, которые чуть сместят вагон или вовсе не сдвинут с места.

Для того чтобы производить математические расчеты, силу обозначают латинской буквой $F$.

Как и все остальные физические величины, сила имеет определенные единицы. В наши дни наука пользуется единицей, которая называется ньютоном ($H$). Она получила такое название в честь ученого Исаака Ньютона, который внес значительный вклад в развитие физической и математической науки.

И. Ньютон - выдающийся английский ученый, основатель классической физики. Его научные работы касаются механики, оптики, астрономии и математики. Он сформулировал законы классической механики, открыл дисперсии света, разработал дифференциальный и интегральное исчисления и т.д.

Измерение силы

Для измерения силы применяют специальные приборы, которые называются динамометрами. Стоит отметить, что указать числовое значение силы не всегда достаточно для определения данных ее действия. Нужно знать точку ее приложения и направление действия.

Если высокий брусок, что стоит на столе, толкать в нижней части, то он будет скользить на поверхности стола. Если же к нему прилагать силу в верхней его части, то он просто опрокинется.

Понятно, что направление падения бруска зависит от того, в каком направлении будем его толкать. Итак, сила это также направление. От направления силы зависит изменение скорости тела, на которые эта сила действует.

Пользуясь графическом методом, можно проводить различные математические операции с силами. Так, если в одной точке на теле прилагаемые силы $2H$ и $CH$ действуют в одном направлении, то их действие можно заменить одной силой, которая работает в том же направлении, а ее значение равняется сумме значений каждой из сил. Вектор этой силы имеет длину, которая равняется сумме длин обоих векторов.

Равнодействующая сила - это сила, действие которой одинаково действует на нескольких сил, приложенных к телу в определенной точке.

Возможен иной случай, когда силы прилагаемые в одной точке тела, действуют в противоположных напрямую. В таком случае их можно заменить одной силой, движущейся в направлении большей силы, а ее значение равняется разности значений каждой силы. Длина вектора этой силы равняется разницей длины векторов прилагаемых сил.

Инерция - это явление сохранения телами постоянной скорости, когда на них не действуют другие тела. Состоит данное явление в том, что для изменения скорости тела требуется определенное время. Инерцию нельзя измерить, ее можно только наблюдать, или воспроизвести.

Заметим, что в земных условиях нельзя создать обстоятельства, при которых на тело не действуют силы, ведь всегда существует земное притяжение, сила сопротивления двигательные и тому подобное. Явление инерции открыл известный ученый Галилео Галилей.Стоит отметить, что для прямого измерения массы применяют различные весы. Среди них самые распространенные и самые простые - рычажные. На этих весах сравнивают взаимодействие с Землей тела и эталонных гирь, возложенных на чашу весов. На практике применяют и другие весы, которые приспособлены к различным условиям работы и имеют разные конструкции. В данном случае, точность измерения массы имеет большое значение.

Физика

Масса тела

Взаимодействие тел. Причиной изменения скорости движения тела всегда являетя его взаимодействие с другими телами.

Постоянство отношения модулей ускорений. При взаимодействии двух тел всегда изменяются скорости и первого, и второго тела, т.е. оба тела приобретают ускорения. Модули ускорений двух взаимодействующих тел могут быть различными, но их отношение оказывается постоянным при любых взаимодействиях:

Инертность тел. Постоянство отношения модулей ускорений двух тел при любых их взаимодействиях показывает, что тела обладают каким-то свойством, от которого зависит их ускорение при взаимодействиях с другими телами.

Чем меньше изменяется скорость тела при взаимодействии с другими телами, тем ближе его движение к равномерному прямолинейному движению по инерции. Такое тело называют более инертным.

Свойством инертности обладают все тела. Оно состоит в том, что для изменения скорости тела при взаимодействии его с другими телами требуется некоторое время.

Масса тела. Свойство тела, от которого зависит его ускорение при взаимодействии с другими телами, называется инертностью . Количественной мерой инертности является масса тела. Чем большей массой обладает тело, тем меньшее ускорение оно получает при взаимодействии.

Поэтому в физике принято, что отношение масс взаимодействующих тел равно обратному отношению модулей ускорений :

m 1 /m 2 =a 2 /a 1 (5.2)
Масса тела - это физическая величина, характеризующая его инертность.

Плотность вещества. Отношение массы m тела к его объёму V называется плотностью вещества:

Плотность выражается в килограммах на кубический метр , единицей плотности является 1 кг/м 3 .

Copyright © 2005-2013 Xenoid v2.0

Использование материалов сайта возможно при условии указания активной ссылки

Взаимодействие тел. Опыт показывает, что при сближении тел (или систем тел) характер их поведения меняется. Поскольку эти изменения носят взаимный характер, говорят, что тела взаимодействуют друг с другом . При разведении тел на очень большие расстояния (на бесконечность) все известные на сегодняшний день взаимодействия исчезают.

Галлилей первым дал правильный ответ на вопрос, какое движение характерно для свободных (т.е. не взаимодействующих тел). Вопреки существующему тогда мнению, что свободные тела “стремятся” к состоянию покоя (), он утверждал, что при отсутствии взаимодействия тела находятся в состоянии равномерного движения (
), включающего покой как частный случай.

Инерциальные системы отсчета. В рамках формального математического подхода, реализуемого в кинематике, утверждение Галилея выглядит бессмысленным, поскольку равномерное в одной системе отсчета движение может оказаться ускоренным в другой, которая “ничем не хуже” исходной. Наличие взаимодействия позволяет выделить особый класс систем отсчета, в которых свободные тела движутся без ускорения (в этих системах большинство законов природы имеют наиболее простую форму). Такие системы называются инерциальными.

Все инерциальные системы эквивалентны друг другу, в любой из них законы механики проявляются одинаково. Это свойство было также отмечено Галилеем в сформулированном им принципе относительности: никаким механическим опытом в замкнутой (т.е. не сообщающейся с внешним миром) системе отсчета невозможно установить покоится ли она или равномерно движется. Любая система отсчета, равномерно движущаяся относительно инерциальной тоже является инерциальной.

Между инерциальными и неинерциальными системами отсчета существует принципиальное отличие: находящийся в замкнутой системе наблюдатель способен установить факт движения с ускорением последних, “не выглядывая наружу”(напр. при разгоне самолета пассажиры ощущают, что их “вдавливает” в кресла). В дальнейшем будет показано, что в неинерциальных системах геометрия пространства перестает быть евклидовой.

Законы Ньютона как основа классической механики. Сформулированные И.Ньютоном три закона движения в принципе позволяют решить основную задачу механики , т.е. по известным начальному положению и скорости тела определить его положение и скорость в произвольный момент времени.

Первый закон Ньютона постулирует существование инерциальных систем отсчета.

Второй закон Ньютона утверждает, что в инерциальных системах ускорение тела пропорционально приложенной силе , физической величине, являющейся количественной мерой взаимодействия. Величину силы, характеризующей взаимодействие тел, можно определить, например, по деформации упругого тела, дополнительно введенного в систему так, что взаимодействие с ним полностью компенсирует исходное. Коэффициент пропорциональности между силой и ускорением называют массой тела :

(1) F= ma

Под действием одинаковых сил тела с большей массой приобретают меньшие ускорения. Массивные тела при взаимодействии в меньшей степени меняют свои скорости, “стремясь сохранить естественное движение по инерции”. Иногда говорят, что масса является мерой инертности тел (рис. 4_1).

К классическим свойствам массы следует отнести 1) ее положительность (тела приобретают ускорения в направлении приложенных сил), 2) аддитивность (масса тела равна сумме масс его частей), 3) независимость массы от характера движения (напр. от скорости).

Третий закон утверждает, что взаимодействия оба объекта испытывают действия сил, причем эти силы равны по величине и противоположно направлены.

Типы фундаментальных взаимодействий. Попытки классификации взаимодействий привели к идее выделения минимального набора фундаментальных взаимодействий , при помощи которых можно объяснить все наблюдаемые явления. По мере развития естествознания этот набор менялся. В ходе экспериментальных исследований периодически обнаруживались новые явления природы, не укладывающиеся в принятый фундаментальный набор, что приводило к его расширению (например, открытие структуры ядра потребовало введения ядерных сил). Теоретические же осмысление, вцелом стремящееся к единому, максимально экономному описанию наблюдаемого многообразия, неоднократно приволило к “великим объединениям” внешне совершенно несхожих явлений природы (ньютон понял,что падение яблока и движение планет вокруг Солнца являются результатами проявления гравитационных взаимодействий, Эйнштейн установил единую природу электрических и магнитных взаимодействий, Бутлеров опроверг утверждения о различной природе органических и неорганических веществ).

В настоящее время принят набор из четырех типов фундаментальных взаимодействий :гравитационные, электромагнитные, сильное и слабые ядерные . Все остальные, известные на сегодняшний день, могут быть сведены к суперпозиции перечисленных.

Гравитационные взаимодействия обусловлены наличием у тел массы и являются самыми слабыми из фундаментального набора. Они доминируют на расстояниях космических масштабов (в мега-мире).

Электромагнитные взаимодействия обусловлены специфическим свойством ряда элементарных частиц, называемым электрическим зарядом. Играют доминирующую роль в макро мире и микромире вплоть на расстояниях, превосходящих характерные размеры атомных ядер.

Ядерные взаимодействия играют доминирующую роль в ядерных процессах и проявляются лишь на расстояниях, сравнимых с размером ядра, где классическое описание заведомо неприменимо.

В настоящее время стали весьма популярны рассуждения о биополе , при помощи которого “объясняется” ряд не очень надежно установленных на эксперименте явлений природы, связанных с биологическими объектами. Серьезное отношение к понятию биополя зависит от того, какой конкретный смысл. Вкладывается в этот термин. Если понятие биополя используется для описания взаимодействий с участием биологических объектов, сводящихся к четырем фундаментальным, такой подход не вызывает принципиальных возражений, хотя введение нового понятия для описания “старых” явлений противоречит общепринятой в естествознании тенденции к минимизации теоретического описания. Если же под биополем понимается новый тип фундаментальных взаимодействий, проявляющийся на макроскопическом уровне (возможности существования которого априорно, очевидно, отрицать бессмысленно), то для столь далеко идущих выводов необходимы очень серьезные теоретические и экспериментальные обоснования, сделанные на языке и методами современного естествознания, которые до настоящего времени представлены не были.

Законы Ньютона и основная задача механики. Для решения основной задачи механики (определение положения тела в произвольный момент времени по известным начальному положению и скорости) достаточно найти ускорение тела как функцию времени a (t). Эту задачу решают законы Ньютона (1) при условии известных сил. В общем случае силы могут зависеть от времени, положения и скорости тела:

(2) F=F (r,v, t) ,

т.е. для нахождения ускорения тела необходимо знать его положение и скорость. Описанная ситуация в математике носит название дифференциального уравнения второго порядка :

(3)
,

(4)

В математике показывается, что задача (3-4) при наличии двух начальных условий (положение и скорость в начальный момент времени) всегда имеет решение и притом единственное . Т.о. основная задача механики в принципе всегда имеет решение, однако найти его часто бывает весьма трудно.

Детерминизм Лапласа . Немецкий математик Лаплас применил аналогичную теорему о существовании и единственности решения задачи типа (3-4) для системы из конечного числа уравнений для описания движения всех взаимодействующих друг с другом частиц реального мира и пришел к выводу о принципиальной возможности расчета положения всех тел в любой момент времени. Очевидно, что это означало возможность однозначного предсказанная будущего (хотя бы в принципе) и полную детерменированность (предопределенность) нашего мира. Сделанное утверждение, носящее скорее философский, а не естественно научный характер, получило название детерминизма Лапласа . При желании из него можно было сделать весьма далеко идущие философские и социальные выводы о невозможности влиять на предопределенный ход событий. Ошибочность этого учения состояла в том, что атомы или элементарные частицы (“материальные точки”, из которых составлены реальные тела) на самом деле не подчиняются классическому закону движения (3), верному лишь для макроскопических объектов (т.е. обладающих достаточно большими массами и размерами). Правильное с точки зрения сегодняшней физики описание движения во времени микроскопических объектов, какими являются составляющие макроскопические тела атомы и молекулы, дается уравнениями квантовой механики, , позволяющими определить только вероятность нахождения частицы в заданной точке, но принципиально не дающего возможности расчета траекторий движения для последующих моментов времени.

В чем причина движения тел? Ответ на этот вопрос дает раздел механики, называемый динамикой.
Как можно изменить скорость тела, заставить его двигаться быстрее или медленнее? Только при взаимодействии с другими телами. При взаимодействии тела могут поменять не только скорость, но и направление движения и деформироваться, изменив при этом форму и объем. В динамике для количественной меры взаимодействия тел друг на друга введена величина названная силой. А изменение скорости за время действия силы характеризуется ускорением. Сила есть причина ускорения.

Понятие силы

Сила – это векторная физическая величина, характеризующая действие одного тела на другое, проявляющееся в деформации тела или изменении его движения относительно других тел.

Сила обозначается буквой F. За единицу измерения в системе СИ принят Ньютон (Н), который равен силе, под действием которой тело массой в один килограмм получает ускорение в один метр на секунду в квадрате. Сила F полностью определена, если заданы ее модуль, направление в пространстве и точка приложения.
Для измерения сил служит специальный прибор называемый динамометром.

Сколько же сил в природе?

Силы можно разделить на два типа:

  1. Действуют при непосредственном взаимодействии, контактные (упругие силы, силы трения);
  2. Действуют на расстоянии, дальнодействующие (сила притяжения, сила тяжести, магнитные, электрические).

При непосредственном взаимодействии, например выстрел из игрушечного пистолета, тела испытывают изменение формы и объема по сравнению с первоначальным состоянием, то есть деформацию сжатия, растяжения, изгиба. Сжата пружина пистолета перед выстрелом, деформируется пулька при ударе о пружину. В данном случае силы действуют в момент деформации и исчезают вместе с ней. Силы такие называют упругими. Силы трения возникают при непосредственном взаимодействии тел, когда они катятся, скользят друг относительно друга.

Примером сил, действующих на расстоянии, может служить камень, брошенный вверх, вследствие притяжения он упадет на Землю, приливы и отливы, возникающие на океанских побережьях. С увеличением расстояния такие силы убывают.
В зависимости от физической природы взаимодействия силы можно разделить на четыре группы:

  • слабые;
  • сильные;
  • гравитационные;
  • электромагнитные.

Со всеми типами этих сил мы встречаемся в природе.
Гравитационные или силы всемирного тяготения являются самыми универсальными, все, что имеет массу способно испытывать эти взаимодействия. Они вездесущи и всепроникающие, но очень слабы, поэтому мы их не замечаем, особенно на огромных расстояниях. Гравитационные силы дальнодействующие, связывают все тела во Вселенной.

Электромагнитные взаимодействия возникают между заряженными телами или частицами, посредством действия электромагнитного поля. Электромагнитные силы позволяют нам видеть предметы, так как свет это одна из форм электромагнитных взаимодействий.

Слабые и сильные взаимодействия стали известны благодаря изучению строения атома и атомного ядра. Сильные взаимодействия возникают между частицами в ядрах. Слабые характеризуют взаимные превращения друг в друга элементарных частиц, действуют при реакциях термоядерного синтеза и радиоактивных распадах ядер.

Если на тело действует несколько сил?

При действии нескольких сил на тело одновременно заменяют это действие одной силой, равной их геометрической сумме. Полученную в этом случае силу называют равнодействующей. Она сообщает телу то же ускорение, что и одновременно действующие на тело силы. Это так называемый принцип суперпозиции сил.

Похожие статьи