Усилитель приёмной антенны. Антенна Харченко: расчет и изготовление Где можно применить универсальный антенный усилитель

22. Размеры и исполнение многоэлементных рамочных антенн.

При изготовлении многоэлементных антенн следует стремиться к возможной оптимизации их параметров. Для двухэлементной антенны коэффициент усиления и КНД зависят как от расстояния между рефлектором и активным элементом, так и от размеров рефлектора. Как проверено на практике, оптимальный рефлектор для двухэлементной антенны должен быть на 5-6% длиннее ее активного элемента. Рефлектор можно выполнить сразу длиннее, а можно выполнить его и подстроечным (рис.78).

Первоначально рефлектор и вибратор выполняют одинаковых размеров, затем изменением длины рефлектора путем перемещения перемычки, настраивают антенну по максимальному усилению или по максимальному ослаблению заднего лепестка – эти настройки несколько не совпадают.

Усиление антенны в большой мере зависит от расстояния между рефлектором и вибратором (рис.79). Как видно из этого графика, приведенного во многих источниках (л.22.1, л.22.2), оптимальное усиление двухэлементной антенны будет при расстоянии вибратор-рефлектор 0,175l . Но антенна будет эффективно работать и при расстоянии, равном от 0,05 до 0,25 длины волны.

Это дает возможность создания таких антенн, как G4ZU и других, укороченных и удлиненных направленных рамочных антенн. Это может быть очень удобно при недостатке места, при размещении рамок вибратора и рефлектора на уже установленных мачтах или каких-либо других опорах.

Отношение излучения вперед/назад двухэлементной антенны может составлять по теории не менее 26 дБ, хотя на практике эта величина бывает ниже и обычно достигает около 24 дБ для квадратов, выполненных на каркасе из изоляционного материала, и может быть не лучше 20-22 дБ для антенны, в конструкции которой задействованы металлические несущие элементы. Металл внутри рамок поглощает и переотражает электромагнитную энергию, что ухудшает характеристики антенны.

К ухудшению характеристик рамочных антенн ведет размещение нескольких антенн на одной траверсе. А если еще используется питание всех рамок через один кабель, то добиться отношения излучения вперед/назад лучше 20 дБ вряд ли удастся. Здесь можно попытаться использовать поляризационное разделение внутренних рамок (л.22.1), но в этом случае коаксиальный кабель, идущий от неиспользуемой в данный момент рамки, необходимо нагружать на какую-либо переменную реактивность – катушку или конденсатор или их систему, и согласовывать эту антенну по минимуму влияния на рабочую.

Как было сказано выше, добавление лишнего директора повышает коэффициент усиления двухэлементной антенны примерно на 2 дБ, а 3-х и более элементной антенны примерно на 1 дБ. График расстояния оптимального расположения директора относительно рефлектора почти совпадает с графиком, приведенным на рис.79, с той лишь разницей, что максимум усиления будет на расстоянии, равном 0,2 длины волны. Периметр директора трехэлементной антенны должен быть на 2,5-3 % длиннее; для четырех и более элементной антенны рефлектор длиннее на 2,5-3 %, а директоры короче на 2 % активной рамки.

Таблицы оптимальных размеров рамочных многоэлементных антенн приведены на рис.81. Конечно, можно жестко не придерживаться расстояния между вибраторами, имея в виду рис.79, следует также помнить, что лучше всего выполнять пассивные элементы антенны подстроечными. Это дает возможность точно настроить антенну по максимуму коэффициента усиления в реальных условиях.

Иногда используют упрощенные пассивные элементы, выполненные в виде диполей (рис.80).

Рамка при использовании таких диполей будет иметь меньшее усиление и больший уровень заднего излучения, чем при использовании пассивных рамочных элементов. Следует правильно размещать пассивные диполи для реальной рамочной антенны, имеющей преобладающую вертикальную или горизонтальную поляризацию. В общем случае, при питании перпендикулярно горизонтальной стороне поляризация будет горизонтальной, при питании перпендикулярно вертикальной стороне поляризация будет вертикальной. Следует также учитывать, что было сказано выше о поляризации рамок с низким подвесом. Размеры диполей для рефлектора и директоров должны быть вдвое меньше периметра соответствующей пассивной рамки. Желательно также и для диполей предусмотреть возможность регулировки их размеров.

Возможно использование и других резонансных элементов в качестве пассивных элементов (рис.80).

23. Многоэлементные рамочные антенны с открытыми рамками.

Все, что касается закрытых рамочных многоэлементных антенн относительно размеров их пассивных элементов и расстояния между ними, верно и для открытых рамочных антенн.

Для получения размеров открытой рамочной антенны необходимо все размеры пассивных и активных элементов умножить на два. Входное сопротивление такой антенны также будет достаточно велико, и для ее питания и симметрирования необходимо использовать все методы, описанные для согласования выше.

Усиление открытой рамочной антенны будет выше закрытой примерно на 2-3 дБ. При использовании для ее питания двухпроводной линии и согласующего устройства, такую антенну можно согласовать в более широком диапазоне частот, чем закрытую рамочную антенну.

Но в то же время такая антенна требует большего расхода материалов по сравнению с закрытой рамочной антенной и больше места для её установки.


24. Двухэлементная антенна G4ZU.

Эта антенна (л. 24. 1. рис.82) имеет ещё одно название - “птичья клетка”, за её внешний вид. Но по позывному впервые предложившего её радиолюбителя, её также называют “квадратная антенна G4ZU”.

Как видно из рисунка, здесь центры рефлектора и излучателя находятся на очень близком расстояние друг от друга – на практике получается 50-20 см, в зависимости от диапазона. За счёт этого неоптимального расположения такая антенна имеет реальный коэффициент усиления – около 6-7 дБ, и ослабление заднего лепестка около 20 дБ.

Для этой антенны требуется всего лишь одна мачта, более того, верхние части антенны (на рис.82 обозначены “О”) имеют нулевой потенциал и, следовательно, могут быть заземлены, что ещё более упрощает конструкцию антенны. При проектировании G4ZU на НЧ диапазоны мачта делается немного выше квадратов и используется для крепления оттяжек (рис. 83). Часто внутри квадратов на НЧ диапазоны помещают квадраты и для ВЧ диапазонов. Можно использовать для этих целей не только квадраты, но и другие рамки: UA1ZAS (л. 24.2) рекомендует использовать дельты для построения G4ZU. Периметр рамок должен соответствовать указанному ранее для двухэлементных антенн. Желательна возможность подстройки рефлектора. Поскольку средняя точка G4ZU заземлена, изменять направление излучения системы можно коммутацией шлейфа и подключения настроечной линией рефлектора (л. 24.3).

Схема такой антенны показана на рис.84. С помощью реле к одной рамке подключают кабель питания, а к другой – удлиняющую линию, и можно менять направление излучения антенны на 360° фиксированно через 90° . Эта антенна должна находиться по возможности в свободном от посторонних предметов пространстве, чтобы исключить их влияние на работу антенны, которое будет проявляться в ее рассимметрировании, и, следовательно, длина настроечного шлейфа будет неоптимальной для каждой из ее сторон излучения.

На принципе питания через симметричное гамма-согласование основана конструкция антенны HB9CV (л.24.1). В ней заземлены уже все точки, имеющие минимум напряжения (рис.85). Эту антенну часто выполняют с уменьшенным расстоянием между вибраторами (рис.86). Коэффициент усиления такой антенны еще меньше, чем G4ZU, и составляет 5-6 дБ. Размеры рефлектора и излучателя соответствуют указанным для многоэлементных антенн, хотя лучше сделать рефлектор с возможностью подстройки его длины.

Антенну G4ZU лучше всего питать 75-омным кабелем (хотя, с некоторым ухудшением ее работы, подойдет и 50-омный), приняв самые серьезные меры по его симметрированию. Можно питать и через симметричное гамма согласование, описанное здесь ранее. Размещать антенну следует как можно выше над землей.


25. Расположение рамочных антенн относительно других предметов.

Рамочные антенны излучают как вертикально, так и горизонтально поляризованную волну. В зависимости от того, какая из них преобладает, выбирают место установки антенны. Крайне важно, чтобы в лепестке диаграммы направленности антенны не было предметов, реагирующих на преобладающую поляризованную составляющую ЭМВ, излучаемую антенной, или чтобы эти предметы находились на расстоянии не менее двух длин волны или, в крайнем случае, на расстоянии, равном половине периметра антенны. Посторонние предметы, переизлучая ЭМВ энергию, могут серьезно исказить диаграмму направленности антенны, вызвав провал в ее лепестке излучения. Особенно это касается многоэлементных антенн с узкой диаграммой направленности. В провале диаграммы направленности рамочной антенны посторонние проводящие предметы могут находиться на расстоянии не менее четверти длины волны работы антенны. В принципе возможно размещение внутри рамки какой-либо малогабаритной антенны – магнитной рамки или штыря, хотя это и несколько ухудшит параметры обоих антенн. Для растяжек рамочных антенн желательно использовать неметаллические оттяжки – синтетическую негниющую веревку, толстую рыболовную леску. Металлические оттяжки могут стать причиной TVI при плохой фильтрации сигнала передатчика и вообще при больших уровнях сигнала, подводимого к антенне.

Рамочные антенны менее капризны в установке, чем дипольные антенны, и допускают свою установку в таких условиях – малая высота подвеса и большая насыщенность мешающими предметами территории их установки – когда установка диполя неэффективна. Это происходит потому, что дипольная антенна разомкнута, и даже небольшое количество проводящих предметов может изменить емкость концов диполя, и, следовательно, изменить его резонансную частоту. Рамочная антенна замкнута, разомкнутая же рамочная антенна является “квазизамкнутой” – т.е. ведет себя как закрытая рамка по отношению к различным дестабилизирующим предметам. Это позволяет подходить к размещению рамочных антенн менее строго, чем в случае дипольных и штыревых антенн.

26. Влияние атмосферных воздействий на рамочную антенну.

Рамочные антенны, особенно открытые, являются одними из самых опасных антенн с точки зрения статического электричества. Вследствие своих значительных линейных размеров и обычно более высокого расположения относительно других антенн, они являются целью для удара молнии и собирателем статического электричества. Это особенно заметно в предгрозовой и грозовой период, а также в сухую зимнюю погоду. Антенна при работе на прием дает много QRM. Если же антенну изолировать от электротехнической “земли”, т.е. вынуть кабель из разъема, то статический заряд, накопленный антенной, выразится в искрах, и довольно значительных, проскакивающих между оплеткой коаксиала и “землей”. Чтобы этого не происходило, необходимо заземлять оплетку коаксиала, и лучше, если это будет сделано на крыше. На крыше оплетку коаксиала следует заземлять через резистор 10-100 кОм мощностью 2 Вт либо через ВЧ-дроссель. Это предотвратит дополнительное рассимметрирование антенны. Хорошим методом защиты антенны от статики является заземление точки полотна нулевого потенциала на мачте размещения антенны. Безопасными антенными являются антенны типа G4ZU, полотно которых заземлено на мачте.

Особое внимание следует обратить на установку разомкнутых рамочных антенн. Для этого необходимо ознакомиться с л.26.1. Открытый незаземленный ус рамки может явиться причиной выхода из строя выходных транзисторов передатчика. Накопленный заряд (он накапливается в погонной емкости коаксиала) может разрушить верхний изолятор, если оплетка кабеля не будет заземлена. Иногда возникает периодический пробой этого изолятора, который может выражаться в сильных QRM приему, и даже может стать причиной TVI.

ЛИТЕРАТУРА.

    Беньковский З., Липинский Э.: Любительские антенны коротких и ультракоротких волн. М., Радио и связь,1983.

    В.Швыдкий (UH8CT): Антенна радиостанции UK8HAA; Радио № 7, 1972.

    Г.Болотов, С.Жемайтис: Многодиапазонный вариант рамочной антенны; Радио № 2, 1989 г.

    К.Сепп, А.Снесарев: КВ антенны “квадрат”; Радио № 6, 7, 1978 г.

    J.L. Dietrich WAORDX: Loops and dipoles; A Comparative analisis QST, sept. 1985.

    Рамка с 50-омным питанием; КВ-журнал № 1, 1992.

    Г.З.Айзенберг и др.: Коротковолновые антенны. М.; Радио и связь, 1985.

    И. Подгорный (UC2AGL): Антенный тюнер; Радиолюбитель № 1, 1991.

    Г.И. Атабеков: Линейные электрические цепи., М., Энергия, 1978.

    Ротхаммель К.: Антенны.; М.; Энергия, 1978.

    Антенна “Мини квадрат”; (“За рубежом”, QST № 8, 1973), Радио № 10, 1973.

    А. Голицин (UA9UR): Антенна для низкочастотных диапазонов; Радио № 2, 1973.

    С. Бунимович: Малогабаритная квадратная антенна; Радио № 4, 1968.

    Квадрат на 14 МГц; (“За рубежом”, RADCOM № 10, 1976), Радио № 4, 1977.

    Е.Барановский, Э.Тумаркин: Диапазонная рамочная антенна; Радио № 6, 1969.

    Антенна на 180-250 МГц; (“За рубежом”, Radioamateur № 12, 1959), Радио № 3, 1960.

    К.Харченко: Проводники с укорочением в антеннах; Радио № 8, 1979.

    К.Харченко: За зоной уверенного приема. Зигзагообразные антенны. Радио № 3, 1961. Телевизионные антенны; Радио № 4, 1961. Двойные зигзагообразные антенны; Радио № 8,1961.

    К.Каллемаа (UR2BU): Ультракоротковолновые антенны; Радио № 8,1973.

    К. Харченко: Еще раз о зигзагообразных антеннах; Радио № 11, 1962.

    К Харченко: Высокоэффективные антенны на 430 МГц; Радио № 4, 1966.

    К. Харченко: Широкополосная телевизионная антенна; Радио № 10, 1967.

    Ю. Кондратьев: Антенна двойной треугольник; Радио № 2, 1974.

    А. Новиков (UA0CAS), А. Бабин (UA0LAQ): Антенна с переключаемой диаграммой направленности; Радио № 6, 1974.

Глава 4. Ромбические антенны

Ромбическая антенна является дальнейшим развитием антенны Бевереджа. Читатель, внимательно прочитавший главу о них, понимает, что антенне Бевереджа присущи свои недостатки. Это – малый КПД, сильное влияние земли. Всё это устранено в ромбической антенне. Ромбическая антенна, как и антенна Бевереджа является антенной бегущей волны. В дальнейшем будем ее называть “Р.А”.

1. Переход от антенны Бевереджа к Р.А.

Относительно высокие характеристики антенны Бевереджа (или антенны бегущей волны-АБВ) при минимальных затратах на ее изготовление, послужили причиной попыток ее использования и в УКВ - диапазоне. Но УКВ антенны должны быть приподняты над землей для повышения дальности связи.

Простое поднятие АБВ над землей приводит к тому, что провод, который ранее был “земляным”, тоже начинает излучать (рис.1). КПД антенны в таком случае должен увеличиться примерно вдвое.

Приподняв антенну Бевереджа над землей, мы получили разные высоты под проводниками h 1 и h 2 . Такое расположение дает нам рассимметрирование антенны и искажение ее диаграммы направленности. Очевидный путь исправления такого положения – параллельное расположение проводников относительно земли (рис.2).

Чем выше над землей будет поднята антенна, тем меньше будет влияние земли на работу антенны. На практике доказано, что высота подвеса около длины волны уже почти полностью исключает влияние земли. Значит, подняв антенну, мы еще более увеличим ее КПД. Но то, что возможно на УКВ, в диапазоне КВ и СВ не всегда возможно, поэтому в этих диапазонах волн Р.А. подвешивается на той высоте, которую можно реально обеспечить для эффективной работы антенной системы.

Очевидно, что, выполнив антенну точно по рис.2, мы получим точки перегиба, где будет резко меняться волновое сопротивление антенны. Это может вызвать повышенный КСВ.

Но для увеличения интенсивности излучения ЭМВ необходимо увеличивать расстояние d между проводами полотна антенны. Из этого логически вытекает построение ромбической антенны как показано на рис.3. Это антенна, поднятая над землей на значительную высоту и образующая ромб. Она имеет коэффициент усиления и КПД гораздо выше антенны Бевереджа.

Исходя из реальных условий, которые обычно существуют при установке радиолюбительских антенн, ниже рассмотрим два варианта выполнения ромбических антенн – оптимальный и неоптимальный.

2. Неоптимальная ромбическая антенна.

Неоптимальная ромбическая антенна – это антенна, сторона ромба которой меньше половины длины волны и высота подвеса меньше четверти длины волны.

Скорее всего, именно такую антенну Вы сможете использовать на 160 и 80 метров. Входное сопротивление такой антенны все равно будет равно примерно 600 Ом. Неоптимальность ее заключается в том, что она будет иметь КПД около 10-20%, т.е. почти 80% мощности передатчика будет рассеиваться на нагрузочном резисторе. Угол излучения ЭМВ в вертикальной плоскости будет более 45° . В то же время эта антенна будет иметь подавление заднего лепестка не менее 10 децибел. Являясь неоптимальной, Р.А. на 160 и 80 метров эта антенна работает все равно эффективнее подвешенных на такой же высоте диполей, которые и необходимо настраивать и низких штырей, имеющих КПД в этих диапазонах на порядок ниже, чем Р.А.

Поэтому, если Вы имеете достаточное количество провода и подходящие точки опоры, то можно смело ставить Р.А. (рис.5), которая не нуждается в настройке и работает во всех любительских диапазонах. При переходе к верхним диапазонам неоптимальная антенна станет оптимальной.

3. Оптимальная Р.А.

Приведу данные расчета оптимальной Р.А. (1).

В такой антенне высота подвеса равна длине волны, сторона L равна 4 длинам волн, а угол b равен 120° (рис.3). Антенна с этими данными имеет подавление заднего лепестка не менее 20 децибел, угол излучения к горизонту в вертикальной плоскости не более 15° . Рекомендуемое сопротивление нагрузки составляет около 400 Ом. КПД такой антенны может достигать 90 %. При переходе к меньшим длинам волн характеристики антенны почти не меняются.

Понятно, что антенна для десятиметрового диапазона со стороной L длиной 40 метров и высотой подвеса равной высоте пятиэтажного дома 20 метров будет неоптимальной на 160 и 80 метров, но иметь уже очень хорошие параметры на 40- и 20-метровом диапазоне и превос-ходные параметры на остальных верхних диапазонах.

4. КПД, мощность.

На рис.4 показан рассчитанный мной КПД для ромбической антенны, приведенной на рис.3.

Поскольку в Р.А. существует режим бегущей волны и, вследствие этого, возможно ее оптимальное согласование с кабелем, она может выдержать большие мощности, подводимые к ней. Например, при выполнении такой антенны из провода диаметром 4-6 мм, она может выдержать мощность, подводимую к ней в 600-800 киловатт. Необходимо лишь так выбрать нагрузку, чтобы она выдержала мощность, рассеиваемую на ней. Для повышения КПД Р.А. Б.В. Брауде предложил ромбическую антенну с плавной трансформацией сопротивления. Формула для КПД АБВ (см. раздел “Антенна Бевереджа”), верна и для Р.А. Из нее видно, что еще один путь к повышению КПД антенны- это уменьшение сопротивления нагрузки. Но для подавления заднего лепестка необходимо согласование волнового сопротивления Р.А. с нагрузочным, а при больших расстояниях между проводами полотна волновое сопротивление равно около 600 Ом. В антенне Б.В. Брауде волновое сопротивление плавно трансформируется от высокого значения к низкому (рис.6).

Благодаря этому на конце нагрузки волновое сопротивление получается низким, уменьшается и среднее сопротивление антенны. Уменьшение сопротивления антенны, кроме увеличения ее КПД, позволяет также увеличить и КПД согласующих устройств. Недостатком такой антенны является то, что ее можно использовать только для работы в одном направлении.

Рекомендации по выбору и размещению нагрузки приведены в главе, посвященной антенне Бевереджа. Но в антенне Бевереджа нагрузка легко доступна, а в Р.А. она может быть труднодоступной при расположении ее прямо у полотна антенны. Для обеспечения доступа нагрузка и трансформатор подключаются к Р.А. через двухпроводную открытую линию (рис.7). Это необходимо потому, что в Р.А. возможно повреждение, как нагрузки, так и трансформатора и при прямом ударе молнии в антенну и при чрезмерной мощности, подводимой к Р.А. на ее неоптимальных частотах.

5. Диаграммы направленности Р.А.

Упрощенный график диаграммы направленностей в вертикальной плоскости для Р.А., показанной на рис.3, приведен на рис.8. Подробные графики диаграммы направленности для различных типов Р.А. приведены в Л.1.

В Р.А. с длиной L более 4 длин волн, на которых она работает, будут присутствовать боковые лепестки большой интенсивности (рис.9). Если радиолюбители могут с ними примириться, то для профессиональной связи они могут быть “лишними”.

Для борьбы с ними применяется двойная ромбическая антенна, предложенная Г.Айзенбергом. Такая антенна состоит из двух ромбических антенн, смещенных примерно на 0,25 L в горизонтальной плоскости относительно малой оси ромба и на 0,1 L в вертикальной плоскости (рис.10). При таком выполнении Р.А. боковые лепестки одной антенны попадают в минимум другой. При этом задние лепестки вычитающие, а передние складывающие. В результате этого уровень задних лепестков снижается, а передних возрастает. КПД двойной антенны несколько выше, чем одиночной.

В любительских условиях, двойную Р.А. выполнять нецелесообразно. Для переключения диаграммы направленности “вперед-назад” можно использовать способы, приведенные в главе об антенне Бевереджа.

6. Суррогатные ромбические антенны.

Если невозможно использовать ромб, поднятый на одинаковую высоту, для полотна Р.А., то можно использовать и суррогатные Р.А. Необходимо лишь, чтобы минимальная высота подвеса сторон Р.А. была не менее одного метра, на концах питания и нагрузки антенна “сходилась”, а в середине расширялась. Тупой угол b (рис.3) не должен превышать 120°. Примеры суррогатных антенн приведены на рис.11.

Антенны на рис.11а даже иногда используются и в профессиональной связи. Конечно, КПД и диаграмма направленности суррогатных Р.А. будут хуже, чем КПД и диаграмма направленности классической Р.А. Но, если невозможно установить нормальную Р.А., можно вполне обойтись и суррогатной.


7. Грозозащита Р.А.

Ромбические антенны вследствие своих значительных размеров и большой высоты подвеса сильно подвержены статическому электричеству и прямому попаданию молнии в полотно антенны. При использовании коаксиала для питания РА через трансформатор, накопленный антенной статический заряд может прожечь трансформатор и повредить радиоаппаратуру. Для снятия статического заряда используются обычные меры – заземление полотна антенны через резистор сопротивлением 10-50 КОм и мощностью свыше 5 Ватт на надежную электротехническую “землю”. При прямом попадании молнии такой резистор может сгореть. Для защиты резистора от перенапряжения в антенне используют разрядники (рис.12).

Простейший самодельный разрядник – это подстроечный конденсатор марки КПВ с немного введенными внутрь пластинами и зазором между ними около 0,5-1мм. Его необходимо защищать от влаги.

8. Влияние на работу Р.А. посторонних предметов.

Если посторонние предметы находятся на расстоянии более метра от полотна Р.А., можно не обращать на них внимание. Они исказят Д.Н. антенны, но на ее входное сопротивление, а значит, на согласование с линией питания повлияют мало.

Проблема в том, что сама Р.А. излучает интенсивную ЭМВ, имеющую как вертикальную, так и горизонтальную составляющую.

Между проводами полотна антенны существует сильное электромагнитное поле. Вследствие этого ромбическая антенна наведет значительные токи в вертикальных и горизонтальных проводах, расположенных внутри нее и на большом удалении от нее. Это может стать причиной TVI и радиопомех. Избавиться от них практически невозможно. Посторонняя антенна, находящаяся внутри полотна Р.А. будет работать плохо. Это относится ко всем типам антенн – и к штыревым, и к дипольным, и к рамочным. Лишь в одном случае можно не обращать внимание на внешнюю Р.А. – если расстояние от внутренней антенны до полотна Р.А. не менее длины волны, на которой работает внутренняя антенна. Можно попытаться уменьшить влияние внешней Р.А. на внутреннюю антенну путем подключения к фидеру питания Р.А. емкости, индуктивности и комбинации того и другого, так как это рекомендовалось в главе, посвященной магнитным антеннам.

  • РАДИОЛЮБИТЕЛЬСКИЕ КОНСТРУКЦИИ Указатель описаний

    Библиографический указатель

    Вы хотите собрать радиоприемник или несложный телевизор. Ваш друг, опытный радиолюбитель, интересуется электромузы­кальными инструментами. А Ваш сын увлекается радиоспортом и ему нужна схема радиоприемника для «охоты на лис».

  • Популярность интернета среди населения постоянно растет. Однако многие люди проживают в таких местах, где сигнал очень слабый или отсутствует вообще. В связи с этим, очень остро встает проблема увеличения мощности и качества приема интернета. Медленная скорость отнимает много времени и не дает желаемого результата. Поэтому нередко на помощь приходит внешняя антенна Харченко, сконструированная в виде , материалом для которого служит толстая медная проволока. Соединение квадратом между собой происходит в местах незамкнутых углов, где и выполняется подключение телевизионного кабеля.

    Такая антенна требует точный расчет под цифровое эфирное телевидение. Для улучшения направленности в некоторых конструкциях может быть установлена решетка или сплошной экран из токопроводящего материала. Подобная биквадратная антенна позволяет решить множество проблем с приемом сигнала и скоростью интернета. Самодельные конструкции, включающие в себя различные типы антенны Харченко изготавливаются сравнительно легко и включают в себя металлические и пластиковые детали, а также элементы из других материалов, соединяемые разными способами. Подобные конструкции легко изготавливаются самостоятельно, в том числе и антенна Харченко для ТВ своими руками.

    Антенна Харченко для модема

    В настоящее время многие пользователи стремятся увеличить скорость своего мобильного интернета. Особенно остро эта проблема стоит перед теми, кто проживает на значительном удалении от базовой станции, пользуясь интернетом на очень низкой скорости. В таких ситуациях наилучшим выходом из положения становится антенна Харченко для 3g модема своими руками, которую достаточно легко изготовить в домашних условиях.

    Эта рамочная конструкция известна как ДМВ антенна еще с 60-х годов прошлого века. Она имеет зигзагообразную рамочную конфигурацию, благодаря которой устройство становится очень эффективным.

    Система состоит из двух квадратных элементов. Для того чтобы сделать расчет антенны для 3g модема на частоту 2100 МГц, размер каждой стороны квадрата должен составлять 53 мм. Вся конструкция выполняется в виде сцепленной структуры, включающей в себя две ромбовидные фигуры с внутренними углами 1200. Это делается с целью снижения внутреннего сопротивления устройства. Соединение ромбов осуществляется между собой методом пайки. Сюда же в дальнейшем припаивается кабель высокой частоты.

    Более точные данные можно получить, используя онлайн калькулятор для расчета антенны Харченко, в который достаточно всего лишь ввести необходимые исходные данные.

    Для повышения эффективности прибор может использоваться совместно с рефлектором. Обычно эта деталь является металлической пластиной, а наиболее подходящим материалом для ее изготовления служит фольгированный текстолит. В данном случае антенны включает в себя определение расстояния между приемным устройством и рефлектором. После расчетов и заготовки материалов, может быть изготовлена антенна Харченко для модема своими руками.

    Соединение деталей между собой осуществляется с помощью термоклея. Зафиксировать нужное расстояние между элементами можно с помощью какого-либо предмета с наиболее подходящими размерами. Затем выполняется подключение антенны к устройству. Поскольку в модемах отсутствуют разъемы для подключения внешних антенн, они просто обматываются проволокой, которая затем соединяется через кабель с приемным устройством. В случае необходимости, по такой же схеме может быть изготовлена антенна Харченко для 4g модема.

    По окончании сборки, на противоположном конце кабеля, который будет соединяться с модемом, нужно собрать так называемое устройство согласования, предусмотренное специально для таких приборов. Для этой цели используется медная фольга, такая же, как в печатных платах. Выполняемый расчет антенны для 4g модема такой же, как и в предыдущем варианте.

    При наличии разъема для внешней антенны, подключение кабеля осуществляется с помощью специального переходника. После всех соединений, антенна для модема считается готовой к использованию. Настройка приема сигнала для 4g выполняется экспериментально, путем медленного поворота конструкции вокруг оси до получения наиболее четкого сигнала. Качество сигнала определяется количеством черточек на значке, отображаемом на компьютере или мобильном телефоне.

    Антенна Харченко для цифрового ТВ

    Для работы цифрового телевидения используется диапазон дециметровых волн. Поэтому перед конструированием следует выполнить антенны Харченко для DVB t2, чтобы максимально усилить прием сигнала.

    Сама конструкция выглядит достаточно компактно, изготавливается в классическом варианте из двух ромбов, в итоге получается антенна зигзагообразная без рефлектора. В качестве основы может использоваться любой токопроводящий материал, например, медный или алюминиевый проводник, диаметром 1-5 мм. Также подойдут трубки, полоски, уголки, профили и т.д. Лучше всего для этих целей подходит медная проволока толщиной 3 мм. Она очень легко гнется, выравнивается и паяется. Далее должна изготавливаться в определенной последовательности. Сопротивление телевизионного кабеля должно быть примерно 50-75 Ом.

    Качество цифрового сигнала не зависит от расстояния, как это происходит в аналоговом телевидении. В данном случае, когда антенна для ТВ нормально работает сигнал нормально поступает в телеприемник, если же имеют место сбои, то никакого сигнала вообще не будет. Соответственно не будет и изображения. Если сигнал есть и он нормально принимается, то изображение будет одинакового качества на всех каналах. Этот фактор нужно обязательно учитывать, когда выполняется для цифрового ТВ, хотя индивидуальные настройки могут быть разными для того или иного региона.

    Непосредственно телевизионная антенна Харченко изготавливается в определенной последовательности:

    • Вначале нужно отмерить кусок проволоки общей длиной 112 см и согнуть его, соблюдая размеры участков попеременно 13 и 14 см.
    • После всех изгибов образуется два конца, которые необходимо зачистить на расстояние 1,5-2 см. На концах делаются петли и фиксируются между собой. Место стыков полностью запаивается. Затем, к одному из стыков припаивается центральная жила, а к другому - оплетка. В результате, получается готовая антенна или двойной квадрат.
    • Биквадратная антенна для телевизора требует телевизионного кабеля примерно 3 метра. Со стороны антенны он зачищается на 2 см, а со стороны штекера - на 1 см. Штекер можно выбирать на свое усмотрение. Его так же как и проволоку нужно зачистить с помощью надфиля или какого-то острого предмета. Таким образом, зигзагообразная антенна Харченко для цифрового ТВ почти готова к использованию.
    • По окончании пайки все стыки следует залить горячим клеем из пистолета. Пока клей не остыл, его излишки нужно собрать. Получается одновременно надежное и эластичное соединение. На самой антенне места пайки тоже заливаются клеем.

    Антенна Харченко для телефона

    Выносная антенна направленного действия способна существенно увеличить возможности мобильного телефона и повысить качество связи при нахождении абонента в отдаленной местности. В продаже не всегда можно встретить наиболее подходящий вариант, поэтому лучшим выходом из положения становится антенна Харченко для сотовой связи, изготовленная из подручных материалов своими руками.

    Наиболее доступный вариант представляет собой стандартную конструкцию, рассмотренную выше. Такая антенна размеры должна иметь исходя из конкретных условий эксплуатации. Все необходимые материалы продаются в хозяйственном магазине. Наиболее простые конструкции могут напрямую соединяться с кабелем и не требуют каких-либо специальных настроек.

    Необходимо в первую очередь запастись медной проволокой, диаметром 2-3 мм. Можно взять изолированный провод и снять с него изоляцию. Если соединения будут производиться без пайки, потребуются специальные разъемы для антенн F-типа и соединители. Когда планируется две антенны Харченко соединить в параллель возможно понадобится рефлектор, который может быть жестяным или алюминиевым. Изоляция стыков выполняется с помощью термоусадочной трубки или изоленты. Для соединения методом пайки потребуется паяльник.

    Медная проволока, подготовленная заранее, изгибается и превращается в зигзагообразную рамку, представляющую собой два ромба. Стороны каждого из них имеют длину 80 см, а общее расстояние между противоположными углами составит 226 см. Далее калькулятор антенны определяет точку соединения этих ромбов, как место соединения с кабелем. К данной точке припаивается кусок кабеля, размером 50 см, а к его противоположному концу накручивается разъем F-типа. Далее к разъему подключается основной кабель необходимой длины.

    В некоторых случаях расчет антенны Харченко онлайн предполагает установку рефлектора, значительно усиливающего прием сигнала в определенной местности. Конструкция получается такая же, как антенна для т2, когда выполняется соединение между собой нижнего конца рамки и рефлектора через оплетку кабеля. С этой целью в рефлектор дополнительно вкручивается болт длиной 50 мм, к которому с помощью стяжки притягивается разъем F-типа. Предварительно к этому разъему припаивается кабель и рамка, расположенная на расстоянии свыше 40 мм. Таким образом, антенна Харченко для мобильного телефона, сделанная самостоятельно в наиболее простом варианте, готова к использованию.

    Для непосредственного соединения приемного устройства с мобильным телефоном используется пигтейл, представляющий собой специальный провод. Один его конец соединяется с антенным кабелем, а другой - при помощи разъема с антенным гнездом телефона. В данном случае проблема рассчитать антенну отсутствует и какие-либо отдельные настройки не требуются, достаточно всего лишь наиболее оптимально расположить антенну, ориентируясь на качество принимаемого сигнала. Мачту с приемным устройством рекомендуется устанавливать, как можно ближе к дому, лучше всего возле окна, чтобы максимально уменьшить длину кабеля.

    Рамочные антенны

    Обычный петлевой вибратор может быть трансформирован в квадратную рамку, периметр которой примерно равен длине волны (рис. 1).

    Рис. 1 Трансформация петлевого вибратора в квадратную рамку.

    Антенны такого типа называются петлевыми или рамочными. Для приема телевизионных программ чаще всего используются двухэлементные и трехэлементные рамочные антенны, которые иначе называют “двойной квадрат” и “тройной квадрат”. Эти антенны отличаются простотой конструкции, довольно высоким усилением и узкой полосой пропускания.

    Узкополосные антенны по сравнению с широкополосными обеспечивают частотную избирательность. Благодаря этому на вход телевизионного приемника не могут проникать мешающие сигналы от других телевизионных передатчиков, работающих на близких по частоте каналах. Это особенно важно в условиях слабого сигнала. Часто возникает необходимость приема слабого сигнала от удаленного передатчика при наличии близко расположенного мощного передатчика другого канала. При таких условиях частотной избирательности телевизионного приемника может не хватить. Кроме того, интенсивный мешающий сигнал, поступая на первый каскад приемника (или антенного усилителя), приводит к перекрестной модуляции полезного сигнала мешающим сигналом. В последующих каскадах избавиться от этого уже невозможно. Поэтому в таких случаях следует применять узкополосные антенны.

    Двухэлементная рамочная антенна изображена на рис. 2. Рамки антенны имеют квадратную форму, а по углам могут иметь закругления произвольного радиуса, не превышающего примерно 1/10 стороны квадрата. Рамки выполняют из металлической трубки диаметром 10 -20 мм для антенн 1-5-го каналов или 8-15 мм для антенн 6-12-го каналов. Металл может быть любым, но предпочтительнее медь, латунь иди алюминий.

    Рис. 2. Двухэлементная рамочная антенна.

    Для дециметрового диапазона рамки выполняют из медного или латунного прутка диаметром 3-6 мм. Верхняя стрела соединяет середины обеих рамок, а нижняя изолирована от вибраторной рамки и крепится к пластине, изготовленной из текстолита или органического стекла. К этой же пластине крепятся концы вибраторной рамки винтами с гайками, для чего концы ее можно расплющить. Стрелы могут быть изготовлены из металла или изоляционного материала. В последнем случае специально соединять между собой рамки нет необходимости. Мачта должна быть деревянной, по крайней мере ее верхняя часть. Металлическая часть мачты должна заканчиваться на 1,5 м ниже антенны. Рамки антенны располагают друг относительно друга так, чтобы их геометрические центры находились на горизонтальной прямой, направленной на передатчик.

    Кабель подключается к концам вибраторной рамки с помощью четвертьволнового короткозамкнутого симметрирующего шлейфа, который изготавливается из того же кабеля. Шлейф и кабель должны подходить к антенне вертикально снизу, расстояние между ними должно быть постоянным по всей длине шлейфа, для чего можно использовать распорки из текстолита. Можно также закрепить кабель и шлейф на изоляционной пластине, к которой крепятся нижняя стрела и концы вибраторной рамки. При этом в пластине сверлят небольшие отверстия, а кабель и шлейф привязывают к ней капроновой леской. Использовать металлические элементы крепления нежелательно.

    Для обеспечения жесткости можно выполнить шлейф из двух металлических трубок, соединенных верхними концами с концами вибраторной рамки. В этом случае кабель пропускают внутри правой трубки снизу вверх, оплетку кабеля припаивают к правому, а центральную жилу к левому концам вибраторной рамки. Трубки шлейфа в нижней части замыкаются перемычкой, перемещением которой можно подстроить антенну на максимум принимаемого сигнала.
    Размеры двухэлементных рамочных антенн, рекомендуемые для метровых телевизионных каналов, приведены в таблице 1.

    Таблица 1. Размеры двухэлементных рамочных антенн метровых волн, мм

    Номера

    каналов

    1450

    1220

    1630

    1370

    1050

    1500

    1260

    В = 0,26L, Р = 0,31L , А = 0,18L , где L - средняя длина волны принимаемого частотного канала, которая приведена . Длина шлейфа для этой антенны берется из таблицы 1 (параметр Ш).

    Размеры двухэлементных рамочных антенн для дециметровых волн приведены в таблице 2. Поскольку в этом диапазоне полоса пропускания антенны охватывает сразу несколько частотных каналов, размеры даются не для одного канала, а для группы соседних частотных каналов.

    Рамочная антенна “двойной квадрат” по сравнению с двухэлементной антенной типа “волновой канал” имеет большее усиление (примерно на 1,5 дБ). Сказанное относится к антеннам, имеющим одинаковую длину. Усиление антенны во многом определяется расстоянием между элементами антенны. Оптимальные с этой точки зрения расстояния находятся в пределах 0,12....0,15L .

    Таблица 2. Размеры двухэлементных рамочных антенн дециметровых волн, мм

    Каналы В Р А Ш
    21- 26 158 170 91 152
    27-32 144 155 83 139
    33-40 131 141 75 126
    41-49 117 126 68 113
    50-60 105 113 60 101

    Конструкция трехэлементной рамочной антенны “тройной квадрат” изображена на рис. 3.


    Рис. 3. Антенна “тройной квадрат”.

    Антенна содержит три квадратные рамки, причем рамки директора и рефлектора являются замкнутыми, а рамка вибратора в точках а - а" разомкнута. Рамки расположены симметрично, так что их центры находятся на горизонтальной прямой, направленной на телецентр, и крепятся к двум стрелам в серединах горизонтальных сторон. Верхняя стрела выполнена из того же материала, что и рамки. Практика показала, что антенна работает лучше, если нижняя стрела выполнена из изоляционного материала (например, из текстолитового прутка). Верхняя стрела припаивается к рамкам, а нижняя может крепиться к рамкам с помощью заливки точек соединения эпоксидной смолой. Антенна крепится к мачте из изоляционного материала. Как и в случае “двойного квадрата”, для симметрирования используется четвертьволновый короткозамкнутый шлейф, выполненный из отрезка того же кабеля.

    Существует также простая конструкция трехэлементной рамочной антенны дециметрового диапазона из одного куска толстого провода, изображенная на рис. 4.

    В точках А, Б и В провода необходимо спаять. Вместо шлейфа, выполненного из куска коаксиального кабеля, используется четвертьволновый короткозамкнутый мостик той же длины, что и шлейф. Расстояние между проводами мостика остается прежним - 30 мм. Конструкция такой антенны оказывается достаточно жесткой и необходимость в нижней стреле отпадает. Кабель подвязывают к правому проводу мостика с

    Рис. 4. Вариант антенны “тройной квадрат”.

    наружной стороны. При подходе кабеля к вибраторной рамке оплетка его припаивается к точке а, центральная жила - к точке б. Левый провод мостика закрепляется на мачте. Необходимо лишь обратить внимание на то, чтобы в пространстве между проводами мостика не располагались ни кабель, ни мачта. С описанием конструкции трехэлементной антенны из одного куска провода можно также познакомиться , с конструкцией шестиэлементной - .

    Входное сопротивление антенны, как и ее усиление, также определяется расстоянием между элементами антенны. На рис.5 приведены зависимости усиления и входного сопротивления от расстояния между ее элементами.

    Например, при расстоянии между рефлектором и вибратором 0,11L получаем, что входное сопротивление антенны равно 65 Ом, а усиление

    Рис. 1.5. Зависимости усиления и входного сопротивления рамочных антенн от расстояния между элементами (верхний рисунок: 1 - “тройной квадрат”, 2 - “двойной квадрат”; нижний рисунок: 1 - одиночная антенна типа “квадрат”, 2 - “двойной квадрат”, 3 - расстояние S = 0,11L соответствует максимальному усилению).

    по сравнению с полуволновым диполем равно 5,5 дБ (для “двойного квадрата”) и 6,6 дБ (для “тройного квадрата”). Следует заметить, что приводимые в популярной литературе значения коэффициента усиления рамочных антенн сильно завышены и достигают 14 дБ.

    Двухэлементная и трехэлементная рамочные антенны имеют довольно узкий главный лепесток диаграммы направленности и поэтому должны тщательно ориентироваться.

    Настройка антенны производится путем изменения длины шлейфа, подключенного к рефлектору. Наиболее оптимальная длина рефлектора на 4% больше длины вибратора.

    При расчете антенны типа “тройной квадрат” можно пользоваться следующими формулами: В = 0,255L ; Р = 0,261L ; Д = 0,247L , где L - длина волны. Оптимальное расстояние между элементами А = 0,11....0,15L .

    Исследования показали, что переход от двухэлементной антенны типа “квадрат”, содержащей вибратор и рефлектор, к трехэлементной антенне приводит к выигрышу в усилении на 1,7 дБ. Аналогичная процедура для антенны типа “волновой канал” дает выигрыш 2,7 дБ. Следует также отметить, что антенна “тройной квадрат” имеет более узкую полосу рабочих частот, чем антенна “двойной квадрат”. Размеры антенн типа “тройной квадрат” для диапазонов метровых и дециметровых волн приведены в таблицах 3 и 4.

    Рамки и верхнюю стрелу антенны метровых волн для достаточной прочности выполняют из трубки диаметром 10... 15 мм, а расстояние между концами вибраторной рамки увеличивают до 50 мм.

    Таблица 3. Размеры трехэлементных рамочных антенн метровых волн, мм

    Номера каналов

    1255

    1060

    1485

    1260

    1810

    1530

    1190

    1080

    Эмил Тафро предложил конструкцию и испытал несколько типов антенн на основе прямоугольной проволочной рамки с соотношением сторон 1:3. Преимущество таких рамочных антенн в небольшой высоте подвеса при условии, что короткая сторона расположена вертикально. Так например, рамку для 40-метрового диапазона (рис.42) достаточно поднять на высоту около 10 метров, чтобы нижняя ее сторона была в 5 метрах от земли.

    Запитывается рамка 50-омным коаксиальным кабелем. Для настройки рамки до КСВ 1:1 в заданном участке диапазона полезно включить в разрыв нижней стороны рамки короткозамкнутый шлейф (рис.43).

    Можно изготовить двухдиапазонную антенну, например для 80 и 40 метров, разместив внутри рамки на 80 м антенну на 40 м (рис.44).

    Для желающих получить более эффективную антенну, можно предложить дополнить активную рамку, например рефлектором (подобная конструкция для диапазона 40 метров показана на рис.45) или добавить еще один или несколько рамочных директоров.

    Была построена 4-элементная рамочная антенна с соотношением сторон 1:3 для 40 метров и проведены ее испытания в сравнении с 3-х элементной полноразмерной Яги, размещенной на высоте 45 метров. Обе антенны имели фиксированное направление на США. Из 100 связей с американскими радиолюбителями 90 давали предпочтение по силе сигналов рамочной антенне и все 100 корреспондентов были лучше слышны на "рамки" чем на Яги. При этом диапазон 40 метров в направлении США "открывался" на 30...45 минут раньше и "закрывался" на такое же время позже при использовании 4-х элементной рамочной антенны. На рис.46 показана схема двухдиапазонной (40 и 80 метров) двойной рамочной антенны.

    Поскольку расстояние между рамками выбрано оптимальным для 80 метров и равно 10,6 м, для 40 метров это много, и пришлось принимать дополнительные меры по согласованию активной вамки 40-метрового диапазона с 50-омным кабелем путем включения между точками питания рамки и 50-омным фидером четвертьволнового отрезка 75-ом-ного кабеля (его физическая длина с учетом коэффициента укорочения равна 7 метров). В табл.1 даны размеры двухэлементных антенн для пяти диапазонов.

    Таблица 1

    Диапазон, МГц

    Активная рамка

    Рефлектор

    Расстояние между рамками, м

    Короткая сторона, м

    Длинная сторона, м

    Короткая сторона, м

    Длинная сторона, м

    В тех конкретных условиях приема телевизионных передач, когда простейшие антенны или трехэлементная антенна типа ’’Волновой канал”не могут обеспечить получение на экране телевизора удовлетворительного качества изображения, можно рекомендовать двухэлементную рамочную антенну, которая иначе называется обычно антенной ’’Двойной квадрат”.

    Рамочные антенны сочетают повышенный коэффициент, усиления с простотой конструкции и отсутствием необходимости настройки при сравнительно узкой полосе пропускания. Узкополосные антенны по сравнению с широкополосными обладают таким дополнительным преимуществом, как частотная избирательность.

    Благодаря этому на вход телевизионного приемника не могут проникнуть помехи от других телевизионных передатчиков, работающих на соседних по частоте каналах, если по каким-либо причинам возникли благоприятные условия распространения их сигналов в данном направлении. Особенно важна частотная избирательность антенны в условиях слабого сигнала.

    Дело в том, что нередки случаи, когда необходимо обеспечить прием слабого сигнала от удаленного передатчика, но поблизости работает мощный передатчик другой программы на соседнем канале. В таких условиях частотной избирательности телевизионного приемника может не хватить.

    Кроме того, как известно, интенсивная помеха, поступая на первый же нелинейный элемент схемы приемника (электронную лампу, транзистор или микросхему), приводит к перекрестной модуляции.сигнала этой помехой. В последующих каскадах избавиться от этой помехи в приемнике уже невозможно. Поэтому ослабление такой помехи, за счет частотной избирательности антенны имеет очень важное значение.

    Наибольшее распространение получили двухэлементные рамочные антенны, хотя Иногда используют также и трехэлементные рамочные антенны. Впервые предложил использовать эти антенны для приема телевидения советский энтузиаст дальнего приема С.К. Сотников.

    Его первая статья с описанием двухэлементных рамочных антенн была помещена в журнале ’’Радио”, 1959 г., №, 4, с. 31-32. Многочисленные эксперименты радиолюбителей подтвердили их эффективность. Антенны с числом рамок более трех не используют по тем же самым причинам, по которым нецелесообразно применение многоэлементных антенн ’’Волновой канал”: необходимость тщательной настройки, без которой параметры антенны от увеличения числа элементов не улучшаются.

    Двухэлементная рамочная антенна показана на рис. 1. Рамки антенны имеют квадратную форму, а по углам могут иметь закругления произвольного радиуса, не превышающего примерно 1/10 стороны квадрата. Рамки наполняют из металлической трубки диаметром 10...20 мм для антенн 1-5-го каналов или 8...15 мм для антенн 6-12-го каналов.

    Рис. 1. Двухэлементная рамочная антенна.

    Как и при изготовлении других антенн, металл может быть любым, но предпочтительнее медь или латунь. Верхняя стрела соединяет сереДины обеих рамок, а нижняя стрела изолирована от вибраторной рамки и крепится к пластине, изготовленной из гетинаксам текстолита или оргстекла толщиной 6...8 мм и размерами 30 x60 мм. К этой же пластине крепятся концы вибраторной рамки винтами с гайками, для чего концы рамки можно расплющить.

    Стрелы могут быть выполнены металлическими или из изоляционного материала - текстолита или винипласта. В этом случае специально соединять рамки между собой нет необходимости! Мачта должна быть деревянной, по крайней мере ее верхняя часть. Металлическая часть мачты должна заканчиваться на 1,5 м ниже антенны.

    Рамки антенны располагают одна относительно другой так, чтобы их воображаемые! центры (точки пересечения диагоналей квадратов) находились на горизонтальной прямой, направленной на передатчик. Крепление антенны к мачте производится в центре тяжести.

    Фидер подключается к концам вибраторной рамки с помощью четвертьволнового короткозамкнутого симметрирующего шлейфа из того же кабеля, что и фидер. Шлейф и фидер должны подходить к антенне вертикально снизу, расстояние между ними должно быть постоянным по всей, длине шлейфа, для чего можно предусмотреть распорки из гетинакса.

    Можно также закрепить фидер и шлейф на изоляционной пластине, к которой крепятся нижняя стрела и концы вибраторной рамки, изготовив ее в виде буквы Т. При этом в пластине сверлят небольшие отверстия, а фидер и шлейф привязывают к ней капроновой леской. Использовать металлические элементы их крепления нежелательно.

    Для обеспечения жесткости можно выполнить шлейф из двух металлических трубок, соединенных верхними концами с концами вибраторной рамки. В этом случае фидер пропускают внутри правой трубки снизу вверх, оплетку, кабеля припаивают к правому, а центральную жилу - к левому концам вибраторной рамки. Трубки шлейфа в нижней части замыкаются перемычкой, перемещением которой можно подстроить антенну на максимум принимаемого сигнала.

    По данным С.К. Сотникова, коэффициент усиления двухэлементной рамочной антенны, выполненной по рекомендованным им размерам, составляет 8...9 дБ, что соответствует увеличению напряжения сигнала в 2.5.. .2.8 раз по сравнению с напряжением сигнала на выходе полуволнового вибратора. Входное сопротивление этой антенны находится в пределах 70.. .80 Ом.

    Размеры двухэлементной рамочной антенны, рекомендованные С.К. Сотниковым для любого из 12 метровых телевизионных каналов, приведены в табл. 1.

    Таблица 1. Размеры двухэлементных рамочных антенн метровых волн, мм.

    Номер канала 1 2 3 4 5 6 7 8 9 10 11 12
    В 1450 1220 930 840 770 410 390 370 360 345 330 320
    Р 1630 1370 1050 950 870 460 440 420 405 390 375 360
    А 900 760 580 530 480 250 240 230 220 210 210 200
    Н 4500 3800 2900 2600 2400 1280 1230 1180 1130 1090 1050 1000
    Ш 1500 1260 970 880 800 430 410 390 375 360 350 335
    Т 1000 840 640 580 530 280 270 260 250 240 230 220

    В своей книге "Антенны любительских радиостанций" (М.: ДОСААФ, 1962) В.П., Шейко приводит другие размеры двухэлементных рамочных антенн, которые можно вычислить по следующим формулам:

    где ляюда - это длина волны канала изображения лямбда_и или средняя длина волны, принимаемого частотного канала лямбда_с, которые приведены в табл. 1Л. Остальные размеры антенны берутся такими же, как указано в табл. 1. Для антенны таких размеров В.П.

    Шейко указывает, что коэффициент усиления составляет 9... 11 дБ, что соответствует увеличению напряжения сигнала в 2,8...3,5 раз по сравнению с напряжением сигнала на выходе полуволнового вибратора. Входное сопротивление такой антенны около 100 Ом.

    Исходя из приведенных значений коэффициента усиления, можно сделать вывод о том, что по усилению, двухэлементная рамочная антенна эквивалентна пятиэлементной антенне "Волновой канал" или немного эффективнее ее, но имеет меньшие габариты и лишена ее недостатков, так как не нуждается в настройке, хорошо согласуется с фидером и обладает хорошей повторяемостью параметров.

    Это объясняется тем, что активной приемной частью каждой рамки являются ее верхняя и нижняя горизонтальные части. Получается, что двухэлементная рамочная антенна содержит четыре элемента и эквивалентна двухэтажной синфазной решетке, собранной из двухэлементных антенн "Волновой канал".

    Влияние дополнительных двух элементов второго этажа оказывается сильнее, чем добавление двух директоров к двухэлементной антенне "Волновой канал", за счет сужения диаграммы направленности в, вертикальной плоскости, а это очень важно в условиях дальнего приема, когда сигнал приходит с линии горизонта под малым углом места.

    Наличие же всего двух элементов, взаимодействующих в каждом этаже, обеспечивает стабильность параметров антенны и их независимость от, естественных разбросов в размерах. Благодаря этому отпадает необходимость индивидуальной настройки каждой антенны и обеспечивается хорошее согласование ее с фидером.

    В качестве наружной антенны можно также использовать трехэлементную рамочную антенну, аналогичную показанной на рис. 2. Отличие наружной антенны от комнатной лишь в том, что ее рамки для большей прочности должны быть выполнены из металлической трубки или прутка диаметром 6... 10 мм, а стрелы и пластина изолятора - более толстыми.

    Рис. 2. Трехэлементная рамочная антенна.

    Остальные размеры для антенны дециметрового диапазона волн должны соответствовать указанным в табл. 2. В связи с тем, что полоса пропускания антенны в дециметровом диапазоне охватывает сразу несколько частотных каналов, размеры даются не для одного канала, а для группы каналов, соседних по частоте.

    Таблица 2. Размеры дециметровой рамочной антенны.

    Каналы Д В Р А Б Н Ш Т
    21-26 134 158 193 67 98 580 152 300
    27-32 122 144 176 61 89 530 139 274
    33-40 110 131 160 55 80 475 126 248
    41-49 99 117 143 50 72 430 112 220
    50-58 89 105 129 45 65 390 102 200
    59-68 81 96 113 41 59 350. 92 181
    69-80 73 86 106 37 53 315 83 164

    Трехэлементную рамочную антенну также можно использовать в диапазонах метровых волн. Размеры такой- антенны для любого из 12 частотных каналов приведены в табл. 3.

    Таблица 3. Размеры трехэлементных рамочных антенн метровых волн, мм.

    Номер канала 1 2 3 4 5 6 7 8 9 10 11 12
    Д 1255 1060 825 750 688 370 354 340 325 312 300 290
    В 1485 1260 975 890 812 438 418 400 385 370 357 345
    Р 1810 1530 1190 1080 990 532 510 488 470 450 435 420
    А 630 532 412 375 345 185 177 170 163 157 150 145
    Б 915 775 600 545 500 270 258 246 237 228 220 210
    Н 5600 4600 3600 3200 3000 1680 1600 1500 1450 1400 1350 1300
    Ш 1500 1260 970 880 800 430 410 390 375 360 350 335
    Т 1000 840 640 580 530 280 270 260 250 240 230 220

    Рамки и верхнюю стрелу антенны метровых волн для достаточной прочности Выполняют из трубки диаметром 10...15 мм, а расстояние между концами вибраторной рамки увеличивают до 50 мм.

    Как отмечалось, коэффициент усиления трехэлементной рамочной антенны указанных размеров по данным В.П. Шейко составляет 14...15 дБ, что значительно превышает коэффициент усиления многоэлементных антенн "Волновой канал".

    Для сравнения напомним, что коэффициент усиления семиэлементной антенны "Волновой канал" равен 10 дБ, одиннадцатиэлементной - 12 дБ, шестнадцатиэлементной - 13,5 дБ. Причем эти значения соответствуют точно настроенным антеннам.

    При изготовлении же антенн "Волновой канал" в любительских условиях без их тщательной настройки указанные значения коэффициентов усиления в лучшем случае следует уменьшить на 3 дБ. Если учесть, что трехэлементная рамочная антенна не нуждается в настройке, ее преимущества очевидны.

    Большой коэффициент усиления рамочных антенн указывает на достаточно малую ширину лепестка диаграммы направленности. Поэтому такие антенны необходимо ориентировать на передатчик более тщательно. Можно рекомендовать следующий способ. Регулятором контрастности телевизора установить минимальную контрастность, при которой еще сохраняется синхронизация.

    Затем подстроить соответствующими регуляторами частоты строчной и кадровой разверток и вновь уменьшить контрастность до срыва синхронизации. После этого скорректировать ориентировку антенны до восстановления синхронизации.

    Можно вновь уменьшить контрастность и подориентировать антенну. На равнинной местности, как правило, достаточно ориентировать антенну только по азимуту при сохранении горизонтального положения ее оси. В условиях же горной местности часто приходится также ориентировать антенну и по углу места, наклоняя ее ось, когда сигнал приходит не с линии горизонта, а с вершины какой-либо горы, являющейся его переизлучателем.

    Двухэлементную антенну можно использовать на расстоянии до передатчика, примерно равном 70 % расстояния прямой видимости, а трехэлементную - вплоть до границы прямой видимости, конечно, при достаточной мощности передатчика. Если же принимается сигнал от передатчика малой мощности и даже в ближней части зоны прямой видимости, полуволновый вибратор или трехэлементная антенна "Волновой канал" не обеспечивает хорошего приема, двухэлементная рамочная антенна (а тем более трехэлементная рамочная антенна) позволит достичь увеличения уровня сигнала на входе телевизора.

    Иногда либо из-за удаленности от передатчика, либо из-за недостаточной мощности этого передатчика контрастность изображения на экране телевизора оказывается недостаточной, а на экране цветного телевизора получается только чернобелое изображение и получить цветное изображение не удается. В этих случаях использование рамочных антенн также позволяет получить хороший эффект.

    Никитин В.А., Соколов Б.Б., Щербаков В.Б. - 100 и одна конструкция антенн.

    Похожие статьи