Как обеспечить максимальную экономичность работы районной котельной. Технические возможности повышения эффективности эксплуатации котельного оборудования

Автореферат диссертации по теме "Теоретические основы повышения эффективности работы котельных установок"

МИНИСТЕРСТВО ЭНЕРГЕТИКИ И ЭЛЕКТРШКАЦЙИ РЕСПУБЛИКИ БЕЛАРУСЬ

Белорусский научно-исследовательский теплоэнергетический институт

твенное объединение "Минскэнерго"

ТЕОРЕТИФСКИЕ основы ПОШПЕНИЯ ЭФФЕКТИВНОСТИ РАБОТЫ

КОТЕЛЬНЫХ УСТАНОВОК.

05.14.01 - Энергетические системы и комплексы

На правах рукописи

БАЙРАПЕВСКИЙ Борис Аыуратович

Работа выполнена в Белорусском научно-исследовательбком теплоэнергетическом институте Республики Беларусь.

Официальные оппоненты:

доктор технических наук, профессор СЕДЕЛКИН В.М.

доктор технических наук, профессор БУБНОВ В.П.

доктор технических наук, профессор БОКУН И.А.

Ведущая организация - БЕЗШШИЭНЕРШПРШ, г.Минск.

Защита состоится " Э 1993 г. в час.

П заседании специализированного совета ИГО АН Б ДО06.03.01 по 7!репу: 220109, Минск - Сосны, Шститут проблем энергетики АН Б.

С диссертацией можно ознакомиться в библиотеке ИПЭ АН Б.

Ваш отзыв на автореферат, заверенный печатью учреждения, в л пух экземплярах просим направлять в адрес специализированного совета при ИПЭ АН Б: 220Ю9, Минск - Сосны, Институт гроблем энергетики АН Б, Специализированный совет ИПЭ АН Б.

Ученый секретарь специализированного совета, д"-ктор технических наук ^

Б.Е.Тверковкин

ОЩА.Я ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность проблемы. Переход народного хозяйства нашей страны на рыночные отношения в условиях нехватки электрических мощностей, возросших требований к охране окружавшей среды и кризисных явлений в плане поставки топлива ставит серьезные задачи в -области теплоэнергетики, как одной из ведущих отраслей промышленности. Опыт показывает, что осуществление природоохранных мероприятий в ряде случаев требует коренного пересмотра утвердившихся ранее конструкций горелок и режимов работы поверхностей нагрева котлов. В условиях эксплуатации бывают случаи, когда высокая температура воды.за котлом, а следовательно и температура уходящих газов, может быть снижена режимными мероприятиями до потребного температурного уровня в теплосети, установленной графиком. Исследования показали, что здесь большую роль играют соотношения массовых потоков теплоносителей: расходов воды через котлы, в теплосети и от бойлеров ТЭЦ. Выявление закономерностей этих потоков позволяет организовать рациональное распределение их, что в свою очередь способствует уменьшению до минимума, а в ряде случаев и до нуля разрывов между температурами воды в теплосети и на выходе из котлов. Низкотемпературная коррозия конвективных поверхностей нагрева водогрейных котлов в ряде случаев является результатом несовершенства конструкции и схемы циркуляции воды в "них. В основе решения этой проблемы лежат особенности процессов лучистого и конвективного теплообмена через, поверхности нагрева котла. Выпускаемые заводами трубчатые воздухоподогреватели (ТВП) холодной ступени являются наиболее консервативными элементами котлов в плане своей конструкции и нерациональности температурных режимов работы.

Решение указанных проблем требует углубления знаний в вопросах теплообмена и распространения струйных потоков в топках и горелках котлов. Значительная часть таких задач решается путем модельных исследований. Поэтому вопросам усовершенствования практических методов моделирования в диссертационной работе уделено большое внимание.

Цельнаботы. Разработка комплексных мероприятий по стабилизации надежности и повышению экономичности теплоэнергетического оборудования на практике, внедрение которых примем шло к любой энергосистеме и ряде промышленных предприятий. Не исключено применение этих разработок к нетрадиционным конструкциям теплоэнергетического оборудования, которые утвердятся ь бпи:кайгаем будущем.

На основании выполненных исследований шш постижения указанной цели решены следующие задачи:

Разработаны практические метопы модельных исследований, доступные к осуществлению как силами НИИ, так и в условиях про-извопства;

Разработана модель процессов тепло- и массообмена в ст~. руйных потоках, образованных взаимодействием коаксиальных встречных и.спутных ограниченных струй, характерных для форкамерных горелок;

Выявлен ряд закономерностей в отношении распределения разнотемпературных потоков в пределах котельной и определено их влияние на. режимы работы котлов;

Разработаны варианты модернизации водогрейных котлов с традиционной (а.с.СССР М» 943493, 1010409) и каскадной (а.с.СССР Jf 992940) схемами питания, метопы расчета оптимальных режимов работы котла и котельной в целом;

Определены основные закономерности процессов теплообмена

и разработаны инженерные меиоды расчета трубчатых воздухоподогревателей холодной ступени разных модификаций: с неравномерным подогревом воздуха за калориферами, с трубами разных диаметров (o.e. СССР Ш& 699837, 821843, 966419), с ребристыми трубами и с электрообогревом труб (а.с. СССР ОТ 800497, 8I95I3).

Научную новизну представляют:

Результаты исследований в области моделирования теплофи-зических процессов при работе топок котлов, горелочных устройств, смесительных и струйных камер горения, воздуховодов и пр.;

Результаты экспериментальных исследований режимов работы циклонной камеры и рециркуляционных форкамерных горелок при сжигании газа и мазута;

Результаты анализа структуры струйных потоков в рециркуляционных камерах при холодных продувках и в условиях горения топлива. Разработка метопа расчета процессов распространения струй в форкамерной горелке и теплообмена их с ограждающими стенками;

Результаты исследования закономерностей распределения ра-знотемпературных потоков воды в пределах котельной и влияние этого ({актора на экономичность работы водогрейных котлов;

- "введение показателя, характеризующего степень загрязнения

поверхностей нагреса котлов в сравнении с их номинальным состоя*

Нием и применение этого показателя для расчета оптимального распределения нагрузок между водогрейными котлами; ■

Результаты исследования общего принципа каскадной схемы питания Са.с. СССР № 992940) и режимов работы водогрейных котлов по этому принципу;

Результаты анализа процессов теплообмена в трубчатых воздухоподогревателях традиционной конструкции, с трубами разных

диаметров, с ребристыми трубами и в случае электрообогрева труб.

Практическая ценность материалов исследования заключается в следующей:

Разработана система инженерных формул, позволяющих определить оптимальный масштаб модели и осуществить расчеты тепловых и аэродинамических характеристик объекта исследования, а именно: температур газов и ограждающих стенок камеры горения, коэффициентов Теплообмена, тепловосприятий и теплонапряжений в зоне горения, скоростей потоков газов и воздуха, сопротивлений каналов и устройства в целом;

Разработан метод расчета тепловых и аэродинамических характеристик рециркуляционных камер горения;

Высокотемпературный подогрев мазута рассматривается кан альтернативное мероприятие, компенсирующее затраты, вызванные ухудшением экономичности работы котла в связи с осуществлением мер по подавлению оксидов азота: двухступенчатого сжиганий, введения газов рециркуляции, увлажнения мазута, сжигания замазучен-ных вод и т.д.;

Разработан метод расчета оптимальных режимов работы котельной на основании фактических показаний штатных приборов с применением, вычислительной техники;

Обоснована целесообразность применения каскадной схемы питания теплообменников любых типов с целью передачи тепла с малыми перепадами температур теплоносителей на входе и выходе;

Разработаны принципы каскадной схемы питания водогрейных котлов разных типов с целью увеличения их надежности и экономичности;

ного подогрева воздуха в калориферах.

Методы исследования основаны на результатах:

Обобщения фактических режимов и опытных данных о работе оборудования и сопоставления их с установленными нормами, теоретическими предпосылками и опытными данными других исследователей с учетом сложившихся концепций по тому или иному вопросу на уровне мировых стандартов;

Анализа причин отклонения режимов работы оборудования от установленных норм;

Анализа принципиальных и фактических возможностей усовершенствования существующих конструкций оборудования и соответствующих технологий, контроля за качеством и производством электроэнергии и теплоты.

Достоверность научных результатов п выводов, полученных в работе определяется:

Правомерной последовательностью теоретического анализа, в частности при изучении процессов моделирования теплообмена и распространения струй в форкемерных.горелках, при изучении особенностей рекимов работы поверхностей нагрева водогрейных котлов, трубчатых воздухоподогревателей и т.д.;

Опытными данными и удовлетворительными результатами анализа их погрешностей (порядка 10-20$ при исследовании циклонной камеры и 4-12$ при исследовании работы форкамерных горелок на котле), что позволило разработать метод выбора и расчета конструктивных характеристик форкаыерных горелок в процессе их проектирования;

Обоснованной оценкой недостатков фактических режимов работы оборудования, его конструкций.и методов контроля за эффективностью технологических процессов. Например, при исследовании, оптимальных режимов работы котельных, схем питания и циркуляции котлов, вопросов модернизации воздухоподогревателей и контроля за эффективностью работы Тс)Ц, котельных и теплосетей.

Автор защищает: материалы исследования, собранные в единый комплекс, которые могут быть использованы в порядке намечаемых программ по пути дальнейшего усовершенствования технико-экономических показателей в области теплоэнергетики, а именно:

Теоретические разработки в области молельных исследований; нетрадиционные методы анализа результатов опыта; инженерные формулы расчетов по определению режимов работы моделей, взаимосвязей между техническими характеркотиками модели и оригинала;

Методы оценки эффективности работы смесительных камер и вариантов компоновки вихревых горелок в топке котла в плане защиты ограждающих стен от попадания факела;

Результаты теоретических исследований в области процессов тепло- и массообмена при распространении потоков в смесительных форкамерах горения со спутными и встречными коаксиальными струями;

Результаты теоретических исследований по выявлению оптимальных режимов работы водогрейных котельных;

Варианты модернизации водогрейных котлов;

Принцип каскадной схемы питания водогрейных котлов традиционных и вновь создаваемых конструкций;

конструкции различных модификаций трубчатых воздухоподогревателей (ТШ) и результаты теоретических исследований особенностей процессов теплообмена в таких ТЕП;« методы их.расчета.

Апробация работы. Основные результаты исследований докладывались: ..

На научно-техническом совещании Оптимальное использование ^теплогенерирующих источников, осуществляющих теплоснабжение городов"-в г.Минске 12 июня 1981 г.;

На Всесоюзном научно-техническом совещании "Повышение на-аекнссти водогрейных котлов типа ПТВМ и КВ-ГМ и схем теплоснабжения" в г.Риге 19-21 октября 1982 г.;

На научном семинаре лаборатории энергопереноса ИТМО АН ЗССР в г.Минске в июне 1965 г.;

На заседаниях теплотехнических секций НЮ Белэнергоремма-ггадки 18.05.84 г., 20.05.85 г., 24.01.86 г. и областного правления НТО Э и ЭП Минской области в мае 1986 г.;

На заседании технико-экономического совет? Минскэнерго от /го соответствует" объемам продуктов сгорания на входе в топку.

Равенство масштабов А/т_= Mo можно достигнуть путем подогрева рабочего воздуха.. 7Z в модели, поступающего из амб-рпзуры горелки. В сравнении с температурой рабочей среды в топ-_ ко (Ц) омэ определяется так: То Vre

Тт -У4 4„Тт

На основании dwitob установлено, что при изучении температурных полей в модели топки в качестве рабочего тела целесообразно использовать воздух, в для визуализации потоков рекоменяует-п " чп.пн^я" модель со ипуЕями воздуха через амбразуры горегоч-|п" у"-тррПстт.!. Рлсширемие ргбочей среды в топке имитируется об-

разованием воздухо-водяной смеси. Организация вдува воздуха в "водяной" модели приводит к разным значениям плотностей ^ и

*г, что в свою очередь позволяет постигнуть равенства масштабов/^, и Мт » а также свести к минимуму различия между аэродинамикой взаимодействующих потоков модели и оригинала.

Выбор масштабов Мт и Мо определяется также запачами исследования, необходимостью соблюдения равенств критериев Рос-сби (/?о), характер изуюших интенсивность крутки потоков, и техническими возможностями при изготовлении модели. Выполненные исследования позволили разработать рабочие формулы по определению конструктивных размеров закручивавшего аппарата при изготовлении модели горелки..

Математическое моделирование взаимодействия вихревых потопов на выходе из горелки с потенциальной средой в топке представляется в виде относительных постоянных составляющих скоростей Ух = их/и01 И Уу = Цч/и.о1 ■

1х ¿Г % (Х-ЭС^2+ (У-УсУ "

Г7 _ -г- ¿¿у1 _ -г- (Х-- 2о1_

где Гс/(2 // Д0i) - тангенциальная скорость враще-

ния на границе потенциального потока плоского вихря в амбразуре С -ой горепкм с радиусом, /2 циркуляция скорости; ^¿/¿о, ¿О - ширина топки, Ус~ - координаты размещения центра вихря ¿"-ой горелки, СС-Х/1, У=„y/¿ - текущие координаты, П - число-вихревых горелок на стене топки.

Нерациональные направления крутки горелок относительно друг друга приводят к набросан факела на близлежащие экраны.Расчетные формулы (16) позволяют построить эпюры скоростей в любых горизонтальных и вертикальных сечениях топки, включая и плоскости ограждающих стен. На рис.Зв порядке примера показаны восемь произвольных вариантов направления круток потоков в амбразуре горелок котла ПТВМ-50. Расчеты выполнены по формулам (16) при условии, что диаметр ядра вихря равен диаметру амбразуры горелки, т.е. 0,33 м. Ширина топки ¿0 = 4,2 м. Вертикальные составляющие скоростей Уу вычислены только плп

сечения топки на уровне 3 м от пола.

Моделирование процессов массообмена при влиянии сил конвекции и гравитации основано на■дальнейшем исследовании модифицированного комплекса

упоминаемого в работах Повха И.Л., Батурина В.В., Дудинцева Л.М., Талиева В.П. и пр. Установлено, что при исследовании таких потоков необходимо строго разграничивать расчетный (инд. "Р") и фактический (инд."Ф") масштабы перепадов температур на входе (вх) и выходе (вых) исследуемого объема: (,-

~~ ¿ех). ®т0 вызвано затруднениями при расчете теп-лопотерь через ограждающие стенки модели в окружающую среду.При неудовлетворительной теплоизоляции модели.измерения могут выполняться при значениях Сл^^С^ , что практически не сказывается на точности результатов. При пересчете локальных температур" с модели на натуру следует также исходить из фактического Сл1 значения масштаба перепадов температур. Расчетное значение С^ используется в процессе отлаживания модели по расходу рабочей среды и уровню фактических теплопотерь через ограждающие стенки.

При изучении смесеобраоовательных процессов практический интерес представляют значения скоростей и концентраций компонентов, имеющих постоянные источники в разных точках исследуемого объема и вентилируемых потоком рабочей среды. Метод исследования основан на измерении скорости падения концентрации одного вещества/? при замещении его другим В. Положим, нзчи-" ноя с некоторого момента времени 2 - 0,состав исследуемой среды Осм, подаваемой в пространство 14м, резко изменил концентрацию компонента от

Замещение компонента Д другим компонентом В произошло таким, образом, что суммарный объемный расход

не изменился. Что

касается локальных значений концентраций Сс компонента Л, то нечиная с момента I = О они с течением времени I > 0 уменьшаются. В данном случае механизм замещения одного компонента другим В аналогичен механизму мономолекулярной химической реакции типа /)-*■ В В данном случае по аналогии с законом дей-стьуюшиг мпсс, учитывал падение концентрации Сг во ■ времени, гмргм:

где Мь - константа.

На основании пальней-ших исслепо-ваний определено выражение, характе-ризуюзее степень вентиляции элементарных объемов АД в двух сравниваема точках М и А/ о потоками вентиляции

соответственно:

Ргз.З, ..Гмпрдаямяа рмугтхутая еацтвЕясё» Смрмгерэх.. " екорое*г,1 .е^генио Тйпга гст.м ПТЕМ - 50 п5 уртвяз 3:1 Н

Гфиэаигалыяк еоет?вг.Фя;гх \"л евйяз» етги еЗ при рьггг^ж

лгах: тпрайлгийй кгрткл г.отвгов возят** е р®Гйвтра*торг»к.„

ашчения й.^гП{ й: раСот»-0-я герммц &",--оч<М№тм Кг" I -Уц йря ОТГЛОЧЗШЦК КргйЖЯС ГврвЛЕП. "; "■„.■......".. ■■"*

где Со, С/ч, £v - концентрации рабочей срепы (вещества fí) в начальный момент времени 7 = 0 (в среднем по всему объему ис-слепуемого пространства), и спустя некоторое время Т в точках М и /V ; " \Л/м,ы ~ условные- скорости потоков рабочей срепы в точках М ■ и /V ; СТ - концентрации примесей, выделяе-

мых стационарно в адекватных точках /У и Л/ оригинала.

Локальные концентрации примесей C¿ в оригинале по лонным испытаний модели определим так:

Ci пр_ Ti Ар " его)

СсТ" Ve, горения со спутио-иольчеси«

¡потоками воздуха. Пунктирша яяник - дадьыз лрГгорении топлива, применительно ¡штрихпуият"ирщэ - при холодных ррэдувка*. Спяорпдсл ляшяш по- гя зтЬиКаШЮННОЙ

" «ллями У.тп^игчтч 1» .1" гти г" п г 1 гпПРНая. ТйЯ"и ППИ * . -

(двухступенчатой) камере горения; ■ - сделан ена-

"казаки криви«, зсарактершз клк.для условия горении, так к при холодщх- продувках. 2 - 3 4 г-& /0 .

5 - и)х\ 6 -Юа». 7-Ь7Р, О 9 -"¿л"/^Г, 10 Ъ -Вх/Вр. К, .13М гЛ. К

лиз расширения струй в исследуемом объеме и разработан метод расчете распределения средних скоростей, температур" и массовых потоков рециркуляции вдоль камеры как при холодных продувках,та к "и в условиях горения;

Разработан метод расчета тепловых и аэродинамических- характеристик исслеяуеиш: горелочних устройств;

В Евстдй глаРе.рассмотрены пути обеспечения надежности, повышения зконимичности и экологического эффекта котельных устано-

вок, На основании исследований установлено, что влияния на экологический эффект обоих факторов - расхода, топлива В с одной стороны и перепадов температурДТ между газами и окружающей средой с другой - равнозначны и противоположны, т.е.: ЗС^/дВ = Г ДО ¿^у» ~ концентрация рассеиваемых выбросов в

приземном слое ат-

о о,2 о.ч о,а о.! /.о х*

1.0 /.е ■ ".г

0.2 О,Ц Цб /¿>

мосферного воздуха. Таким образом, всякое мероприятие по- снижению температуры уходящих газов за котлом следует рассматривать с точки зрения влияния этого мероприятия на технологический процесс подогрева воды и генерации пара в нем..Если снижение температуры уходящих газов приводит к соответствующему ро-

1.1С"1"Т1ПП дичг.1» кттри горения со встречт-колмигы-

"571ГЛ--,! ! > ¡¿ XI. Ку>«Т*Г№« ЛИНИИ - Д1НН4» В|И ГОргНЛИ ТОП-

птяхяууктигн!« - г т и холоечкх пр07у?ктх. СПХ01М1ГЧ1 лиге- с ту КПД СруТТО КО-ята крч!», л"-г:-"К7срч1.г тк Д1Ч уе*0»я3 горения, так и: ТТО (Т.О. ВЛНЯеТ

гчи /010дкл грояугклх. I - Гхя^ЯГ. 2 - Тр "УК, 3 -Л-/0. "

л -р. 5 -¿Л, с,-ирг. 7 С-ю... э - ю - т звено,учоствую-

¿,-/Э->°С, II -В,/В, 1П -Рг-,%

шее в техпологиче-ском процессе теплообмена рабочих сред в котле), то в этом случае увеличения концентраций вредных выбросов, т.е. экологического "ущерба" за счет снижения эффективности работы дымовой трубы, не будет. В противоположность этому всякая утилизация дымовых газов за последней поверхностью нагрева котла путем включения теплообменных аппаратов и прочих звеньев, но участвующих в технологическом процессе теплообмена в котле и не способствует?* уменьшения расхопя топлива, чревата увеличением вредных выбросов за счет снижения эффективности работы дымовой трубы (с пониженной темперртурой газов и неизменном их массовом расходе).

Одним из ьажных резервов экономии топлива в котельных является освоение их оптимизационных режимов. Установлено,что оптимизация режима работы водогрейной котельной может осуществляться по двум направлениям одновременно: по пути оптимального распределения нагрузок между "котлами и по пути уменьшения до минимума разрывов между значениями температур воды на выходе из котлов и в прямой теплосети. В отличие от известного цетода "относительных приростов" задача оптимального распределения нагрузок в ванной работе основана на анализе фактических показателей работы котла и сравнении их с номинальными. При выполнении соответствующих расчетов вводится комплекс f , характеризующий влияние загрязнения поверхностей нагрева (с помощью коэффициента ^) за период эксплуатации на рост температуры уходящих газов в сравнении с номиналом. Из сравнительного анализа процессов теплообмена через чистую и загрязненную поверхности нагрева следует, что производная дбух/З^ для того или иного состояния котла является константой, т.е. Э^ух/д?~ ~ - (¿ух~ ¿еР),К0"^£опи; здесь ¿УК) -температура уходящих газов и воды в поверхностях нагреЕа, К0 - коэффициент теплопередачи. Величину этого комплекса можно вычислить путем сравнения значений при фактических и номинальных условиях на основании известной формулы Я.Л.Пеккера для ^ и анализа функций: ¿ух, с/ул, ¿хв)> /("¿т^ f) ; здесь ¿т, Окт - температура воды на входе в котел и ее расход; - коэфф)ициент избытка воздуха в уходящих газах. В. конечном итоге замкнутая система уравнений., позволяющая вычислить нагрузку Ос с -го котла при общем числе их / имеет вид:

_/7____^ _/___(25)

где fc (Ql) - функция изменения от нагрузки фактического значения кпд брутто котла. Она определяется из учета аналогичной исходно-нормативной зависимости -ff&J путем корректировки последней на фактические отклонения балансовых потерь теплоты: В гсиомамтнон когле rax;

где ^ и можно установить по формуле Пеккера Я.Л.,

Исследования второго пути оптимизации работы котла позволили установить три категории режимов работы комплекса. теплоснабжения, кржпый из которых (ь расчете на опин котел) характеризуется определенными соотношениями расходов поды в сети (jci , через бойлера ТЭЦ Gr^ni и через котел -Gutni , а именно: по 1-й категории Gci^($ктс, по 2-ой категории u£s"&K"nt"^ßcc\

Сравнительный"анэлиз показал, что эффект за счет экономии топлива б результате оптимизации нагрузок колеблется в пределах от 0 до 0,373. В то же время аналогичный эффект зе счет оптимального распреголения потоков воды в пределах котельной в 3-5 раз больше, т.е. в пределах от 0 до 1,48$.

На основании анализа теплового режима работы поверхностей нагрева и топок водогрейных котлов следует, что их необходимо модернизировать:

Улучшить топочные процессы путем организации исполнения минимально-допустимого уровня гор елочных устройств в топке котла и увеличения объема топки за счет ликвидации больших откосов холодной воронки;

Увеличить коррозионную стойкость котлэ, не снигая его оконаличности, путем организации последовательного подогрева воды сначала в экранях топки, затем в конвективных поверхностях ногревя котла, расположенных в газоходе и перевопя режичо работы конвективного пучка с противоточного на прямоточный;

Повысить надежность работы котла при резких колебаниях гидравлического режима путем исключения нисходящих потоков ьо-ды в экранных трубах и исключения подачи и отвода воды через коллектора по схеме „2Г " с целью замены ее"но схему„/7" , обеспечивающую меньшую гидравлическую разверку труб;

Увеличить производительность котла и защитить от коррозии поверхности нагрева его, расположенные в зоне уходящих газов путем организации дополнительного ввода холодной или горячей (после насосов рециркуляции) воды в промежуточный трпкт котла и организации двух независимых контуров от насосо рециркуляции при работе котла по 2-х ходовой схеме: один поток направлять в контур, позволяющий выдерживать меньшую темперртуру воды на входе, другой - в контур, требующий более высокого температурного уровня. При этом общая темперптурр воды поело смече-

ния на выходе из обоих контуров котла должна соответствовать заданному графику в теплосети.

Задача по снижению температуры воды на выходе из котла до заданной величины решается также путем организации каскадной схемы питания (КСП). Принципиальная схема подогрева воды таким способом показана на рис.8а на примере котла, включенного в теплосеть. Здесь один котел, способный передавать тепло &= -С6к(Ь~£ц) " разбит на J секций. Каждая из них способна генерировать, положим.//^" часть теплоты от суммарной величины 0=^1 йс = С"6к£. (-¿я -¿а) , т. е. ¿? , причем,

£ -< ¿£ -¿7/ " Эпюры изменения температур теплоносите-

ля в случае организации КСП (линия 3) и без нее (линия 4) показаны на рис.8б. Такой результат постигается путем соответствующего распределения потоков воды, указанных на рис.8а. Изменение расходов эт^х потоков (при условии, что тепловые и гидравлические режимы всех секций одинаковы) и уменьшение степени подогрева волы в таком секционном котле в зависимости от числа секций J можно выразить так:

Gh j а „-¿о) + ¿¿-¿л

G,< ~ ¿(¿x<-io)+ ¿л~1н ■

где = Od - расход воды через каждую t -ую секцию котла, Sp - поток рециркуляции.

Кривые (27) показаны на рис.Бв. Расчеты выполнены при значениях ¿а = 70°С, {и = Ю4°С, ¿2 = 150°С.

Таким образом, основной особенностью КСП водогрейного котла является возможность снижения среднего температурного уровня циркулирующей воды в поверхностях нагрева со всеми вытекающими из этого последствиями. В частности, более низкий температурный уровень воды в котле позволяет иметь некоторый запас в отношении предельных норм"качества котловой воды, что очень важно при частом попадании в теплосеть сырой воды. Кроме того,открываются возможности снижения температуры уходящих газов путем

уменьшения

5) OS" 0.4 -0.20

температуры волы на выходе из котла. Такая схема питания может быть использована не.только при разработке котлов новой конструкции,но и при модернизации старых. Организация КСП котлов, работающих в базовом режиме. по 4-х ходовой схеме-позволяет увеличить их производительность, не уменьшая температуру воды на входе ниже Ю0-104°С. Известные отличия между процессами теплообмена в топке и газоходе котлэ открывают возможности по организации с помощью КСП ра-знотемпературных режимов подогрева вопы в его.секциях с целью стабилизации температуры уходящих газов. на допустимом уровне в широком дгапазоне нагрузок. К СП котла позволяет загружать его в пиковом, базовом и соответственно промежуточном (смешанном) режимах по мере необходимости ь оперативном порядке путем соответствующих переключений,не меняя циркуляции воды ь се-

Т>ис.8. . Каск»дная Схема.и тодогрей }(чго уотла с организацией четирсх (^«4) одинаковых секций нагреяа. & - схем» циркуляции потоков: I - сетевой насос; 2 - на-соо рециркуляции. б - опяри течлерптур соды по тракту котла: 3-е организацией 1-ЕЛ; 4-е традиционной схечой питания, в - зарис;"мсст»! иугененяя потоков Gp , Sie и степени подогг«""" годы п котле ¿jJ - i/t от числа секций/ : 5 - ¿ij - In)/ (¿i - ///); С - fy/Gr-,

ти и котле. Организация КСП облегчает задачу оптимизации режима котельной в целом из учета загрузки насосов рециркуляции и повышения надежности, и экономичности котлов, способствует осуществлении оптимизации комплексе теплоснабжения в целом.

излагаются результаты исследования режимов работы трубчатых воздухоподогревателей холодной ступени (ТШ). Одно и то же количесюо труб в ТШ традиционной конструкции* может располагаться о разными шагами по фронту движения воздуха и глубине куба. Исследования показали, что в связи с этим меняются тепло-технические характеристики куба (его сопротивление по воздуху и тепловосприятие). На рис.9 в порядке примера показаны изменения некоторых характеристик куба в зависимости от." числа рядов по глубине его » конструктивного параметра

-.¡о но, последний определяется значениями ша-. ГОВ Роп, Рсу- и числом рядов = 39 в ТШ, с которым производится.сравнение ■ (инп."О"). На оси ординат (рис.9) в виде безразмерных комплексов указаны: К= (..¡о; 0„=(0г»-0оу

Го -/00 0^О)

АРоУ/ооЖ1

чина я от некоторого чи-; ела рядов (V як в

0,2 0,4ОА 0,6 0,7 "Т

Рис.® . Теплотехнические характеристики ТТЛ трздшгаом- СТОРОНу УМеНЬШеНИЯ СО-

но» конструкии» в зависимости от параметра т.е. от" ПрОТиВЛвНИе ДР ТШ вариантов коипоновк» тру« » доске с разними числами:; возоастяет » В радов/..Безразмерные комплексы: I -_коз«иииент теп- . УВс,ко возрастает» а в

«передач* Ш х г - тепловосприятие См; 3,4 - темпера- СТОрОНу уменьшения Тй-

»да воздуха * ка»и*оде ¿Л»ГГ1Ь - сопротив- т возпветявт МП нн_ лени, по воздуху/}? : 6 - >змекен«о параметра У/СЬт возрастает, НО Нв-

1ЧЖНМ1 радо» / 4 значительно. Пр-И этом

рост температуры газов т£г за ТШ (т.е. снижение тепловосприя-тия ТВП) практически невелико. Оптимальное значение параметра в ТШ традиционной конструкции определяется в процессе разработки конструкции котла. . "

Исследования показали, что эффективными средствами увеличения надежности работы ТШ холодной ступени и экономичности котла в целом являются: установка по ходу подогреваемого воздуха рядов труб с постепенно или ступенчато убывающими диаметрами и дифференцированный подогрев воздуха в. секционном калорифере.Эта задача решена на основании анализа критериальных уравнений теплообмена в ТШ, где в качестве аргументов взяты диаметры и шаги труб. Принцип решения поставленной задачи следующий. По заданным значениям температур воздуха и газов на входе в ТШ и за калорифером определяются диаметры труб в первом и последнем рядах куба. Затем по полученным расчетным формулам устанавливается кривая распределения диаметров труб по рядам ТШ от первого до последнего. Вывод этих формул основан на анализе изменения тепловосприятия куба ТШ в каждом ¿"-ом ряду» что можно представить в виде уравнения:

К< 6вСв¿и = & ¿„с = - Япс, (28)

где Кг - коэффициенты пропорциональности; ЭС-Х/Х^ с началом отсчета (Л = О, I - I) от осей первого ряда; Ау - расстояние между первым (= I) и последним (¿V) рядами труб; Ое - массовый расход воздуха; ^ - поверхность и пла-

тность теплового потока труб С -го ряда; На основании (28) при установленных граничных условиях"определяем общие выражения по распределению диаметров труб и температуры воздуха по глубине куба модернизированного ТШ: /

&Хр(К, -X)] .

¿е;-1е< ~2)Гв-2>Г ехр(- ъ) " (30)

где константы ^

-\££1-, I (32)

/-ехр(-кл) " 2) -Ыа /с}

Похожие статьи