Формула Эйлера для определения критической силы сжатого стержня. Влияние способов закрепления концов стержня на величину критической силы

ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами

(Болгарский язык; Български) - приведена дължина на прът

(Чешский язык; Čeština) - vzpěrná délka prutu

(Немецкий язык; Deutsch) - reduzierte Stablänge; ideelle Stablänge

(Венгерский язык; Magyar) - rúd kihajlás! hossza

(Монгольский язык) - туйвангийн хөрвүүлсэн урт

(Польский язык; Polska) - długość sprowadzona pręta

(Румынский язык; Român) - lungime convenţională a barei

(Сербско-хорватский язык; Српски језик; Hrvatski jezik) - redukovaná dužina štapa

(Испанский язык; Español) - luz efectiva de una barra

(Английский язык; English) - reduced length of bar

(Французский язык; Français) - longueur réduite d"une barre

Строительный словарь .

Смотреть что такое "ДЛИНА СТЕРЖНЯ ПРИВЕДЕННАЯ" в других словарях:

    длина стержня приведенная - Условная длина сжатого стержня с заданными условиями закрепления его концов, длина которого по значению критической силы эквивалентна длине стержня с шарнирно закреплёнными концами [Терминологический словарь по строительству на 12 языках (ВНИИИС… …

    приведенная длина стержня - Условная длина однопролетного стержня, критическая сила которого при шарнирном закреплении его концов такая же, как для заданного стержня. [Сборник рекомендуемых терминов. Выпуск 82. Строительная механика. Академия наук СССР. Комитет научно… … Справочник технического переводчика

    Схемы деформирования и коэффициенты при различных условиях закрепления и способе приложения нагрузки Гибкость стержня отношение расчетной длины стержня … Википедия

    - (силомер). Этим именем называют в курсах физики пружинные весы, а в механике приборы для измерения механической работы (см). Самое старинное изображение пружинных весов, по словам Карстена, напечатано в 1726 г., без описания, в книге: Leupold,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    МЕРЫ - МЕРЫ, определенные физ. величины, с которыми сравниваются другие величины с целью измерения последних. Основные меры наиболее распространенной метрической системы: метр длина при 0° платинового стержня, хранящегося в Международном бюро мер и… … Большая медицинская энциклопедия

Иркутский государственный университет путей сообщения

Лабораторная работа № 16

по дисциплине«Сопротивление материалов»

ОПЫТНОЕ ОПРЕДЕЛЕНИЕ КРИТИЧЕСКИХ СИЛ

ПРИ ПРОДОЛЬНОМ ИЗГИБЕ

Кафедра ПМ

Лабораторная работа № 16

Опытное определение критических сил при продольном изгибе

Цель работы: исследование явления потери устойчивости сжатого стального стержня в упругой

стадии. Экспериментальное определение значений критических нагрузок сжатых

стержней при различных способах закрепления и сравнение их с теоретическими

значениями.

Общие положения

Сжатые стержни недостаточно проверять на прочность по известному условию:

,

где [σ] – допускаемое напряжение для материала стержня, P – сжимающая сила, F – площадь поперечного сечения.

В практической деятельности инженеры имеют дело с подвергающимися сжатию гибкими стержнями, тонкими сжатыми пластинами, тонкостенными конструкциями, выход из строя которых вызывается ен потерей несущей способности, а потерей устойчивости.

Под потерей устойчивости понимается потеря первоначальной формы равновесия.

В сопротивлении материалов рассматривается устойчивость элементов конструкций, работа­ющих на сжатие.



Рассмотрим длинный тонкий стержень (рис. 1), нагруженный осевой сжимающей силой P .

P < P кр P > P кр

Рис. 1. Стержень, нагруженный осевой сжимающей силой P .

При малых значениях силы F стер­жень сжимается, оставаясь прямолинейным. Причем, если стержень отклонить от этого положения небольшой поперечной нагрузкой, то он изогнется, но при снятии ее стержень возвращается в прямолинейное состояние. Это значит, что при данной силе P прямолинейная форма равновесия стержня устойчива.

Если продолжить увеличивать сжимающую силу P , то при неко­тором ее значении прямолинейная форма равновесия становит­ся неустойчивой и возникает новая форма равновесия стержня - криволинейная (рис. 1, б). Вследствие изгиба стержня в его сече­ниях появится изгибающий момент, который вызовет дополнитель­ные напряжения, и стержень может внезапно разрушиться.

Искривление длинного стержня, сжимаемого продольной силой, называется продольным изгибом .

Наибольшее значение сжимающей силы, при котором прямоли­нейная форма равновесия стержня устойчива, называется критичес­ким - P кр .

При достижении критической нагрузки происходит резкое каче­ственное изменение первоначальной формы равновесия, что ведет к выходу конструкции из строя. Поэтому критическая сила рассмат­ривается как разрушающая нагрузка.

Формулы Эйлера и Ясинского

Задачу определения критической силы сжатого стержня впер­вые решил член Петербургской академии наук Л. Эйлер в 1744 г. Формула Эйлера имеет вид

(1)

где Е модуль упругости материала стержня; J min - наименьший момент инерции поперечного сечения стержня (поскольку искривление стержня при потере устойчивости происходит в плоскости наименьшей жесткости, т. е. поперечные сечения стержня повора­чиваются вокруг оси, относительно которой момент инерции ми­нимален, т.е. либо вокруг оси x , либо вокруг оси y );

(μ·l ) – приведенная длина стержня, это произведение длины стержня l на коэффициент μ, зависящий от способов закреп­ления концов стержня.

Коэффициент μ называют коэффициентом приведения длины ;его значение для наиболее часто встречающихся случаев закрепления концов стержня приведены на рис. 2:

а - оба конца стержня закреплены шарнирно и могут сближаться;

б - один конец жестко защемлен, другой свободен;

в - один конец закреплен шарнирно, второй имеет «поперечно-плавающую заделку»;

г - один конец жестко защемлен, второй имеет «поперечно-плавающую заделку»;

д - один конец заделан жестко, на другом шарнирно-подвижная опора;

е - оба конца жестко защемлены, но могут сближаться.

Из этих примеров видно, что коэффициент μ представляет со­бой величину, обратную числу полуволн упругой линии стержня при потере устойчивости.

Рис. 2. Коэффициент μ для наиболее часто

встречающихся случаев закрепления концов стержня.

Нормальное напряжение в поперечном сечении сжатого стержня, соответствующее критическому значению сжимающей силы, также называется критическим.

Определим его исходя из формулы Эйлера:

(2)

Геометрическую характеристику сечения i min , определяемую по формуле

называют радиусом инерции сечения (относительно оси с J min ). Для прямоугольного сечения

С учетом (3) формула (2) примет вид:

(4)

Отношение приведенной длины стержня к минимальному ра­диусу инерции его поперечного сечения по предложению профес­сора Санкт-Петербургского института инженеров путей сообще­ния Ф.С. Ясинского (1856-1899) называют гибкостью стержня и обозначают буквой λ :

В этой безразмерной величине одновременно отражаются такие параметры: длина стержня, способ его закрепления и характеристи­ка поперечного сечения.

Окончательно, подставив (5) в формулу (4), получим

При выводе формулы Эйлера предполагалось, что материал стер­жня упруг и следует закону Гука. Следовательно, формулу Эйлера можно применять только при напряжениях, меньших предела про­порциональности σ пц , т. е. когда

Этим условием определяется предел применимости формулы Эйлера:

Величину, стоящую в правой части этого неравенства, называют предельной гибкостью :

ее значение зависит от физико-механических свойств материала стержня.

Для низкоуглеродистой стали Ст. 3, у которой σ пц = 200 МПа, Е = 2· 10 5 МПа:

Аналогично можно вычислить значение предельной гибкости для других материалов: для чугуна λ пред = 80, для сосны λ пред = 110.

Таким образом, формула Эйлера применима для стержней, гиб­кость которых больше или равна предельной гибкости , т. е.

λ λ пред

Понимать это надо так: если гибкость стержня больше предельной гибкости, то критическую силу надо определять по формуле Эйлера.

При λ < λ пред формула Эйлера для стержней неприменима. В этих случаях, когда гибкость стержней меньше предельной, при расчетах пользуются эмпирической формулой Ясинского :

σ кр = a λ , (7)

где а и b - определяемые опытным путем коэффициенты, по­стоянные для данного материала; они имеют размерность напря­жения.

При некотором значении гибкости λ о напряжение σ кр , вычис­ленное по формуле (7), становится равным предельному напря­жению при сжатии, т. е. пределу текучести σ т для пластичных мате­риалов или пределу прочности при сжатии σ вс – для хрупких материалов. Стер­жни малой гибкости (λ < λ о )рассчитывают не на устойчивость, а на прочность при простом сжатии.

Таким образом, в зависимости от гибкости расчет сжатых стер­жней на устойчивость производится различно.

Понятие об устойчивости и критической силе. Проектировочный и проверочный расчеты.

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость - способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) - нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y - прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение - формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая - в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр - приведенная длина стержня; l - фактическая длина стержня; μ - коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней - проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

Исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

По справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

Сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины - искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений:

Обычно в первой попытке принимают φ 1 = 0,5…0,6 и определяют площадь сечения в первом приближении

По найденной площади A1 подбирают сечение и вычисляют гибкость стержня в первом приближении λ1. Зная λ, находят новое значение φ′1;

Выбор материала и рациональной формы сечения.

Выбор материала . Так как в формулу Эйлера из всех механических характеристик входит лишь модуль Юнга, то для повышения устойчивости стержней большой гибкости нецелесообразно применять высокопрочные материалы, так как модуль Юнга для всех марок сталей примерно одинаков.

Для стержней малой гибкости применение высокосортных сталей оправдано, так как с повышением предела текучести у таких сталей повышаются и критические напряжения, а значит и запас устойчивости.

Таким образом, чем больше точек перегиба будет иметь синусоидально-искривленная ось стержня, тем большей должна быть критическая сила. Более полные исследования показывают, что формы равновесия, определяемые формулами (1), неустойчивы; они переходят в устойчивые формы лишь при наличии промежуточных опор в точках В и С (рис.1).

Рис.1

Таким образом, поставленная задача решена; для нашего стержня наименьшая критическая сила определяется формулой

а изогнутая ось представляет синусоиду

Величина постоянной интегрирования а осталась неопределенной; физическое значение ее выяснится, если в уравнении синусоиды положить ; тогда (т. е. посредине длины стержня) получит значение:

Значит, а — это прогиб стержня в сечении посредине его длины. Так как при критическом значении силы Р равновесие изогнутого стержня возможно при различных отклонениях его от прямолинейной формы, лишь бы эти отклонения были малыми, то естественно, что прогиб f остался неопределенным.

Он должен быть при этом настолько малым, чтобы мы имели право применять приближенное дифференциальное уравнение изогнутой оси, т. е. чтобы было по прежнему мало по сравнению с единицей.

Получив значение критической силы, мы можем сейчас же найти и величину критического напряжения , разделив силу на площадь сечения стержня F ; так как величина критической силы определялась из рассмотрения деформаций стержня, на которых местные ослабления площади сечения сказываются крайне слабо, то в формулу для входит момент инерции поэтому принято при вычислении критических напряжений, а также при составлении условия устойчивости вводить в расчет полную, а не ослабленную, площадь поперечного сечения стержня . Тогда

Таким образом, критическое напряжение для стержней данного материала обратно пропорционально квадрату отношения длины стержня к наименьшему радиусу инерции его поперечного сечения. Это отношение называется гибкостью стержня и играет весьма важную роль во всех проверках сжатых стержней на устойчивость.

Из последнего выражения видно видно, что критическое напряжение при тонких и длинных стержнях может быть весьма малым, ниже основного допускаемого напряжения на прочность . Так, для стали 3 с пределом прочности допускаемое напряжение может быть принято ; критическое же напряжение для стержня с гибкостью при модуле упругости материала будет равно

Таким образом, если бы площадь сжатого стержня с такой гибкостью была подобрана лишь по условию прочности, то стержень разрушился бы от потери устойчивости прямолинейной формы.

Влияние способа закрепления концов стержня.

Формула Эйлера была получена путем интегрирования приближенного дифференциального уравнения изогнутой оси стержня при определенном закреплении его концов (шарнирно-опертых). Значит, найденное выражение критической силы справедливо лишь для стержня с шарнирно-опертыми концами и изменится при изменении условий закрепления концов стержня.

Закрепление сжатого стержня с шарнирно-опертыми концами мы будем называть основным случаем закрепления. Другие виды закрепления будем приводить" к основному случаю.

Если повторить весь ход вывода для стержня, жестко защемленного одним концом и нагруженного осевой сжимающей силой на другом конце (Рис.2), то мы получим другое выражение для критической силы, а следовательно, и для критических напряжений.


Рис.2. Расчетная схема стержня с жесткозакрепленным одним концом.

Предоставляя право студентам проделать это во всех подробностях самостоятельно, подойдем к выяснению критической силы для этого случая путем следующих простых рассуждений.

Пусть при достижении силой Р критического значения колонна будет сохранять равновесие при слабом выпучивании по кривой АВ . Сравнивая два варианта изгиба видим, что изогнутая ось стержня, защемленного одним концом, находится совершенно в тех же условиях, что и верхняя часть стержня двойной длины с шарнирно-закрепленными концами.

Значит, критическая сила для стойки длиной с одним защемленным, а другим свободным концами будет та,же, что для стойки с шарнирно-опертыми концами при длине :

Если мы обратимся к случаю стойки, у которой оба конца защемлены и не могут поворачиваться (Рис.3), то заметим, что при выпучивании, по симметрии, средняя часть стержня, длиной , будет работать в тех же условиях, что и стержень при шарнирно-опертых концах (так как в точках перегиба С и D изгибающие моменты равны нулю, то эти точки можно рассматривать как шарниры).


Рис.3. Расчетная схема с жесткозакреплеными торцами.

Поэтому критическая сила для стержня с защемленными концами, длиной , равна критической силе для стержня основного случая длиной :

Полученные выражения можно объединить с формулой для критической силы основного случая и записать:

здесь — так называемый коэффициент длины, равный:

Для стержня, изображенного на рис.4, с одним защемленным, а другим шарнирно-опертым концами, коэффициент оказывается примерно равным , а критическая сила:

Рис.4. Потеря устойчивости стержня с одним жесткозакрепленным и другим шарнирно-опорным торцом

Величина называется приведенной (свободной) длиной, при помощи коэффициента длины любой случай устройства опор стержня можно свести к основному; надо лишь при вычислении гибкости вместо действительной длины стержня ввести в расчет приведенную длину . Понятие о приведенной длине было впервые введено профессором Петербургского института инженеров путей сообщения Ф. Ясинским).

На практике, однако, почти никогда не встречаются в чистом виде те закрепления концов стержня, которые мы имеем на наших расчетных схемах.

Вместо шаровых опор обычно применяются цилиндрические шарниры. Подобные стержни следует считать шарнирно-опертыми при выпучивании их в плоскости, перпендикулярной к оси шарниров; при искривлении же в плоскости этих осей концы стержней следует считать защемленными (с учетом оговорок, приведенных ниже для защемленных концов).

В конструкциях очень часто встречаются сжатые стержни, концы которых приклепаны или приварены к другим элементам, часто еще с добавлением в месте прикрепления фасонных листов. Такое закрепление, однако, трудно считать защемлением, так как части конструкции, к которым прикреплены эти стержни, не являются абсолютно жесткими.

Между тем, достаточно возможности уже небольшого поворота опорного сечения в защемлении, чтобы оно оказалось в условиях, очень близких к шарнирному опиранию. Поэтому на практике недопустимо рассчитывать такие стержни, как стойки с абсолютно защемленными концами. Лишь в тех случаях, Когда имеет место очень надежное защемление концов, допускается небольшое (процентов на 10—20) уменьшение свободной длины стержня.

Наконец, на практике встречаются стержни, опирающиеся на соседние элементы по всей плоскости опорных поперечных сечений. Сюда относятся деревянные стойки, отдельно стоящие металлические колонны, притянутые болтами к фундаменту, и т. д. При тщательном конструировании опорного башмака и соединения его с фундаментом можно считать эти стержни имеющими защемленный конец. Сюда же относятся мощные колонны с цилиндрическим шарниром при расчете их на выпучивание в плоскости оси шарнира. Обычно же трудно рассчитывать на надежное и равномерное прилегание плоского концевого сечения сжатого стержня к опоре. Поэтому грузоподъемность таких стоек обычно мало превышает грузоподъемность стержней с шарнирно-опертыми концами.

Значения критических нагрузок могут быть получены в виде формул типа эйлеровой и для стержней переменного сечения, а также при действии нескольких сжимающих сил.

В конструкциях и сооружениях большое применение находят детали, являющиеся относительно длинными и тонкими стержнями, у которых один или два размера поперечного сечения малы по сравнению с длиной стержня. Поведение таких стержней под действием осевой сжимающей нагрузки оказывается принципиально иным, чем при сжатии коротких стержней: при достижении сжимающей силой F некоторой критической величины, равной Fкр, прямолинейная форма равновесия длинного стержня оказывается неустойчивой, и при превышении Fкр стержень начинает интенсильно искривляется (выпучивается). При этом новым (моментным) равновесным состоянием упругого длинного становится некоторая новая уже криволинейная форма. Это явление носит название потери устойчивости.

Рис. 37. Потеря устойчивости

Устойчивость – способность тела сохранять положение или форму равновесия при внешних воздействиях.

Критическая сила (Fкр) – нагрузка, превышение которой вызывает потерю устойчивости первоначальной формы (положения) тела. Условие устойчивости:

Fmax ≤ Fкр, (25)

Устойчивость сжатого стержня. Задача Эйлера .

При определении критической силы, вызывающей потерю устойчивости сжатого стержня, предполагается, что стержень идеально прямой и сила F приложена строго центрально. Задачу о критической нагрузке сжатого стержня с учетом возможности существования двух форм равновесия при одном и том же значении силы решил Л. Эйлер в 1744 году.

Рис. 38. Сжатый стержень

Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой F. Положим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:

где y – прогиб стержня в произвольном сечении с координатой x.

Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:

(26)

Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)

(27)

Это выражение – формула Эйлера.

Зависимость критической силы от условий закрепления стержня.

Формула Эйлера была получена для, так называемого, основного случая – в предположении шарнирного опирания стержня по концам. На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.

Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.

Рис. 39. Различные случаи закрепления стержня

Общая формула Эйлера:

(28)

где μ·l = l пр – приведенная длина стержня; l – фактическая длина стержня; μ – коэффициент приведенной длины, показывающий во сколько раз необходимо изменить длину стержня, чтобы критическая сила для этого стержня стала равна критической силе для шарнирно опертой балки. (Другая интерпретация коэффициента приведенной длины: μ показывает, на какой части длины стержня для данного вида закрепления укладывается одна полуволна синусоиды при потере устойчивости.)

Таким образом, окончательно условие устойчивости примет вид

(29)

Рассмотрим два вида расчета на устойчивость сжатых стержней – проверочный и проектировочный.

Проверочный расчет

Порядок проверочного расчета на устойчивость выглядит так:

– исходя из известных размеров и формы поперечного сечения и условий закрепления стержня, вычисляем гибкость;

– по справочной таблице находим коэффициент понижения допускаемого напряжения, затем определяем допускаемое напряжение на устойчивость;

– сравниваем максимальное напряжение с допускаемым напряжением на устойчивость.

Проектировочный расчет

При проектировочном расчете (подобрать сечение под заданную нагрузку) в расчетной формуле имеются две неизвестные величины – искомая площадь поперечного сечения A и неизвестный коэффициент φ (так как φ зависит от гибкости стержня, а значит и от неизвестной площади A). Поэтому при подборе сечения обычно приходится пользоваться методом последовательных приближений.

Похожие статьи