Параметры объемно планировочного решения одноэтажных промышленных зданий. Объемно-планировочное решение здания (ОПР) Расположение (компоновка) помещений

Лекция 7

Объемно-планировочные решения промышленных зданий.

Конструктивные решения промышленных зданий

1. Объемно-планировочное решение

2. Эксплуатируемый объем

3. Типизация и унификация секций, пролетов и конструкций

4. Фундаменты и фундаментные балки

5. Колонны одноэтажных и многоэтажных зданий

6. Железобетонные балки и фермы

7. Стены и перегородки

8. Окна и фонари

9. Двери и ворота промышленных зданий

10 Полы промышленных зданий

10. Технико-экономическая оценка зданий

Объемно-планировочное решение

Объемно-планировочное решение промышленного здания – это целесообразное по функционально-техническим, технологическим, архитектурно-художественным и экономическим требованиям расположение отдельных помещений в общем строительном комплексе.

Большое значение имеют правильно запроектированные объемно-планировочные и конструктивные решения промышленных зданий, так как от них в значительной степени зависят возможности расположения технологического оборудования, уровень организации производственных процессов, комплексной механизации и автоматизации любого предприятия. При проектировании необходимо предвидеть развитие предприятия (совершенствование технологических процессов и оборудования) на достаточно длительную перспективу.

Для некоторых производств пищевой и перерабатывающей промышленности разработаны и рекомендуются для строительства крупные и высокие одноэтажные корпуса павильонного типа. В таком цехе различное технологическое оборудование располагают на сборно-разборных этажерках, не связанных с несущим каркасом здания, а при производственной необходимости его легко переместить или заменить.

В зависимости от характера оборудования и климатических условий технологическое, энергетическое и санитарно-техническое оборудование рекомендуется размещать на открытых площадках, применяя при необходимости местные укрытия. Важной задачей является обеспечение в промышленных зданиях необходимых климатических, светотехнических и акустических условий, которые отвечали бы характеру производства, что может повысить производительность труда. Независимо от характера технологического процесса на каждого работающего проектируют не менее 4,5 м 2 производственной площади и 15 м 3 объема здания. На таких предприятиях пищевой и перерабатывающей промышленности требуется постоянно поддерживать на заданном уровне температуру, влажность, чистоту воздуха внутри помещений и достаточную освещенность. Предприятия, в которых по условиям технологического процесса необходимо применять кондиционирование воздуха для поддержания заданных параметров (температуры, влажности, давления, скорости перемещения и чистоты воздуха), что обеспечивает требуемое качество выпускаемой продукции, целесообразно проектировать бесфонарными, а в отдельных случаях и без окон, с герметизацией и искусственным освещением. Отечественная и зарубежная практика показала, что искусственное освещение, вентиляция и кондиционирование воздуха создают комфортабельные условия для высокопроизводительного труда, независимо от характера предприятия и климатических условий района. В проектах при необходимости следует предусматривать создание искусственного климата и искусственного или комбинированного освещения. Производственные помещения с постоянным пребыванием работающих без естественного освещения или с недостаточным по биологическому воздействию естественным освещением (коэффициент естественной освещенности менее 0,1%) должны быть оборудованы установками ультрафиолетового излучения и фонарями.



При проектировании современных промышленных зданий применяют укрупненную унифицированную сетку колонн. Производственные и вспомогательные здания должны иметь в плане форму прямоугольника с простым объемом и профилем без перепадов по высоте смежных пролетов. Допускается выравнивание высоты смежных пролетов при перепаде высот менее 1,2 м, но при этом учитывается соотношение площади низких и высоких частей зданий. В смежных пролетах перепадов высот менее 1,2 м не разрешается.

Для производств с развитыми подземными технологическими коммуникациями целесообразно проектировать вместо подвальных помещений надземный этаж по всей площади здания.

Одноэтажные здания проектируют с фонарями и бесфонарными или с окнами. На производствах с влажностью воздуха в помещениях 70 % и более, как правило, проектируют бесфонарные здания независимо от климатических условий и величины тепловыделений, в других случаях тип производственного здания выбирают на основе сравнения их технико-экономических показателей. Многоэтажные промышленные здания проектируют по требованиям технологического процесса, при наличии вертикальных грузовых потоков, в случаях строительства на затесненных территориях или на территории действующих заводов.

Если эти здания сооружают на одной площадке, то, как правило, они имеют единую сетку колонн. В зависимости от полезных нагрузок (массы оборудования и людей) на междуэтажное перекрытие рекомендуется применять сетки колонн 12×6 м при нагрузке до 100 МПа, 9×6 м – до 150 МПа и 6×6 м – при 200 и 250 МПа.

Многоэтажные производственные здания проектируют шириной 18 м и более, но при необходимости допускается ширина менее 18 м. Количество этажей обычно принимают от 2 до 6 с высотой, кратной 0,6 м и равной 3,6; 4,8; и 6 м; для первого этажа предусмотрена дополнительная высота 7,2 м.

Естественная освещенность многоэтажных зданий обеспечивается при ширине их не более 36 м. В случае применения обычного или провисающего оборудования при укрупненной сетке колонн верхних этажей допускается применять подвесной транспорт (кран-балки, кошки, электротали, монорельсы, конвейеры и др.) грузоподъемностью до 5 т.

При проектировании следует стремиться максимально объединять отдельные производства в крупные корпуса, если это решение не противоречит специальным нормам и требованиям по технологическим, санитарно-гигиеническим и противопожарным условиям. Блокирование отдельных производств под одной крышей целесообразно осуществлять одновременно с укрупнением технологических агрегатов и применением комплексной автоматизации всех технологических процессов, которые входят в состав цеха или предприятия. Блокированию в одном крупном здании подлежит весь комплекс цехов и служб предприятия, включая в себя основные и подсобные цехи, склады, трансформаторные подстанции, распределительные и маслопункты, подсобные помещения, конторы, административно-бытовые помещения, лаборатории и другие объекты. Не блокируют склады легковоспламеняющихся жидкостей, масел и другие специальные сооружения. В крупных сблокированных зданиях с производством категорий А, Б, В и Е следует предусматривать комплекс противопожарных и противовзрывных мероприятий для этих производств.

При проектировании внутрицехового транспорта следует ограничивать применение мостовых кранов, используя напольный (автокраны, автопогрузчики, электрокары, транспортеры и др.) и подвесной транспорт. Монтаж и демонтаж оборудования необходимо выполнять самоходными безрельсовыми кранами и такелажными приспособлениями. Транспортировать и укладывать грузы (материалы и полуфабрикаты) в складских зданиях следует с применением экипажного оборудования в виде авто- и электрокар, вильчатых погрузчиков, штабелеукладчиков и т.п. Сыпучие материалы транспортируют пневмотранспортом, шнеками, элеваторами и другими закрытыми устройствами.

Внутреннее пространство здания или отдельного помещения (интерьер) на предприятиях слагается из строительных конструкций; технологического оборудования; подъемно-транспортных устройств; коммуникаций.

Эксплуатируемый объем

Строительные конструкции создают объемно-планировочное решение здания, а остальные элементы составляют его эксплуатируемый объем.

Технологическое оборудование проектируют в зависимости от характера производства, его мощности. В зависимости от объема и высоты оборудование условно делят на: крупное, объемом более 50 м 3 и высотой от 10 до 15 м; среднее, объемом от 20 до 50 м 3 и высотой от 5 до 10 м; мелкое, объемом менее 20 м 3 и высотой до 5 м.

Тяжелое оборудование большой массы или значительных размеров устанавливают на собственные фундаменты (постаменты), которые отделяют от несущего остова и конструкции пола швами расширения для устранения трещин от усадки бетона, колебаний температуры и вибрационного воздействия. Служебные или обслуживающие площадки, как правило, необходимо крепить непосредственно к технологическому оборудованию. Проектирование самостоятельных обслуживающих площадок разрешается только в случаях, если крепление их к технологическому оборудованию технически осуществить нельзя или экономически нецелесообразно.

Современные предприятия в производственных помещениях имеют большое количество коммуникационных трубопроводов. Для удобства проектирования коммуникаций и безопасности эксплуатации введена опознавательная окраска трубопроводов и оборудования (таблицы 2 и 3).

Таблица 2 – Значения сигнальных цветов

Таблица 3 – Сигнальные цвета для колец

Окраска трубопроводов должна быть единой и обязательной на каждом предприятии.

Цветовая отделка интерьера производственных зданий способствует увеличению производительности труда, быстрой и правильной ориентировке, своевременной реакции в процессе работы, снижению утомляемости и т.п.

Унификация -- приведение к единообразию размеров объемно-планировочных параметров зданий и их конструктивных элементов, изготовляемых на заводах. Унификация имеет целью ограничение числа объемно-планировочных параметров и количества типоразмеров изделий (по форме и конструкции). Осуществляют ее путем отбора наиболее совершенных решений по архитектурным, техническим и экономическим требованиям.

Типизация -- техническое направление в проектировании и строительстве, позволяющее многократно осуществлять строительство разнообразных объектов благодаря применению унифицированных объемно-планировочных и конструктивных решений, доведенных до стадии утверждения типовых проектов и конструкций.

Помимо изыскания оптимальных объемно-планировочных параметров (пролет, шаг и высота) и конструктивных (сортамент строительных изделий), унификация и типизация должны устанавливать градации функциональных параметров: долговечности отдельных конструкций и зданий в целом, температурно-влажвостных и технологических режимов и т. п.

Типовые объемно-планировочные и конструктивные решения должны позволять внедрять прогрессивные нормы и методы производства и предусматривать возможность развития и совершенствования технологии производства. Здесь надо иметь в виду, что периоды перестановки и замены технологического оборудования весьма различны: для одних производств они равны 3--4 годам, для других -- 10 годам и более.

При разработке вопросов типизации и унификации учитывают также перспективы развития несущих конструкций (особенно большепролетных зданий), требования модульной системы, возможность обеспечения выразительного архитектурно-художественного облика зданий и технико- экономические показатели.

Таким образом, унифицированные объемно-планировочные и конструктивные решения не являются чем-то застывшим; они постоянно совершенствуются в связи с прогрессом в технологии строительного производства, изменением норм проектирования и градостроительных требований.

Обеспечить взаимозаменяемость элементов можно при комплексном подходе к их конструированию. Необходимым условием взаимозаменяемости является выработка единой системы допусков изготовления и сборки конструкций вне зависимости от их материалов.

Примерами взаимозаменяемых конструкций могут служить замена металлических ригелей железобетонными или деревянными, покрытии с прогонами беспрогонными, стеновых блоков крупноразмерными панелями и т. п. Взаимозаменяемыми должны быть панели наружных стен зданий, одинаковые по размерам, по теплотехническим и иным качествам, но выполненные из различных материалов.

Высшей формой унификации является создание универсальных конструкций и деталей, пригодных для различных объектов и конструктивных схем (например, использование колонн одного типоразмера в зданиях с различными пролетами, применение одних и тех же панелей для стен и покрытий и т. п.).

Подобно универсальным планировочным решениям, делающим здания гибкими в технологическом отношении, универсальные конструкции и детали расширяют область их использования. Итак, основными задачами унификации и типизации являются:

уменьшение числа типов промышленных зданий и сооружении и создание условий для их широкого блокирования;

сокращение числа типоразмеров сборных конструкций и деталей с целью повышения серийности и снижения стоимости их заводского изготовления;

рациональное членение конструкций на монтажные единицы и разработка несложных приемов их сопряжения и крепления;

создание лучших условий для использования прогрессивных технических решений.

Контрольные вопросы

Вопрос

Вопрос

Контрольные вопросы

Контрольные вопросы

Вопрос

Вопрос

Вопрос

Вопрос

Контрольные вопросы

Вопрос

Вопрос

Вопрос

Вопрос

Вопрос

Вопрос

Контрольные вопросы

Вопрос

Вопрос

Контрольные вопросы

Вопрос

Вопрос

Вопрос

Вопрос

Вопрос

Контрольные вопросы

Вопрос

Вопрос

МЕЛКОГО ЗАЛОЖЕНИЯ НА ЕСТЕСТВЕННОМ ОСНОВАНИИ.

ПРОЕКТИРОВАНИЕ ОСНОВАНИЙ И ФУНДАМЕНТОВ

Учебно-методическое пособие

Редактор Л.А.Мягина

ПД №6 - 0011 от 13.06.2000.

Подписано в печать 04.12.2007.

Формат 60х84 /1 16. Бумага типограф.

Печать офсетная.

Уч. – изд. л.3,5.

Тираж 100 экз. Заказ №105882.

Рязанский институт (филиал) МГОУ

390000, г. Рязань, ул. Право-Лыбедская, 26/53

1. Основные виды промзданий и их конструктивные схемы 3

2. Вопросы типизации и унификации промзданий 6

3. Каркас одноэтажных промзданий ……………... 8

4. Каркасы многоэтажных промзданий …………… 20

5. Покрытия промзданий ……………………………. 22

6. Световые и аэрационные фонари ………………. 23

7. Полы промышленных зданий …………………… 25

8. Кровли. Водоотвод с покрытий …………………. 27

9. Прочие конструктивные элементы промзданий 29

10. Список литературы………………………………… 33

Тема «Основные виды промзданий и их конструктивные схемы»

1 Архитектурно-конструктивные требования к промзданиям.

2 Классификация промышленных зданий.

К промышленным зданиям относят такие здания, в которых выпускается промышленная продукция. Промышленные здания отличаются от гражданских внешним обликом, большими размерами в плане, сложностью решения вопросов инженерного оборудования, большим количеством строительных конструкций, воздействием многочисленных факторов (шум, пыль, вибрация, влажность, высокие или низкие температуры, агрессивные среды и т.д.).


Разрабатывая проект промышленного здания, необходимо учитывать функциональные, технические, экономические и архитектурно-художественные требования, а также обеспечить возможность его возведения поточно-скоростным методом с применением укрупнённых элементов. При проектировании производственных зданий следует заботиться о создании наилучших удобств для работающих и нормальных условий для осуществления прогрессивного технологического процесса.

Предопределяющим фактором для определения объёмно-планировочных и конструктивных схем промзданий является характер технологического процесса, поэтому основным требованием к промзданию является соответствие габаритных размеров технологическому процессу.

Промышленные предприятия классифицируются по отраслям производства.

Промздания независимо от отрасли промышленности разделяют на 4 основные группы:

- производственные ;

- энергетические ;

- здания транспортно-складского хозяйства ;

- вспомогательные здания или помещения .

К производственным относят здания, в которых размещены цехи, выпускающие готовую продукцию или полуфабрикаты.

К энергетическим относят здания ТЭЦ, снабжающие промпредприятия электроэнергией и теплом, котельные, электрические и трансформаторные подстанции, компрессорные и др.

Здания транспортно-складского хозяйства включают гаражи, стоянки напольного промышленного транспорта, склады готовой продукции, пожарные депо и т.д.

К вспомогательным относятся здания для размещения административно-конторских помещений, бытовых помещений и устройств, медпунктов и пунктов питания.

По числу пролётов одно-, двух- и многопролётные . Однопролётные здания характерны для небольших производственных, энергетических или складских зданий. Многопролётные широко используются в различных отраслях промышленности.

По числу этажей одно- и многоэтажные . В современном строительстве преобладают одноэтажные здания (80%). Многоэтажные здания применяют в производствах с относительно лёгким технологическим оборудованием.

По наличию подъёмно-транспортного оборудования – на бескрановые и крановые (с мостовым или подвесным оборудованием). Практически все промздания снабжены ПТО.

По конструктивным схемам покрытий каркасные плоскостные (с покрытиями по балкам, фермам, рамам, аркам), каркасные пространственные (с покрытиями – оболочками одинарной и двоякой кривизны, складками); висячие различных типов _ перекрёстные, пневматические и т.д.

По материалам основных несущих конструкций – с ж/бетонным каркасом (сборным, монолитным, сборно-монолитным), стальным каркасом , кирпичными несущими стенами и покрытиями по ж/б, металлическим или деревянным конструкциям.

По системе отопления отапливаемые и неотапливаемые (с избыточным теплоотделением, здания, не требующие отопления – склады, хранилища и т.д.).

По системе вентиляции с естественной вентиляцией через оконные проёмы; с искусственно-притяжной вентиляцией ; с кондиционированием воздуха .

По системе освещения – с естественным (через окна в стенах или через фонари в покрытиях), искусственным или совмещённым (интегральным) освещением.

По профилю покрытия - с фонарными надстройками или без них . Здания с фонарными надстройками устраивают для дополнительного освещения, аэрации или того и другого вместе.

По характеру застройки сплошная (корпуса большой длины и ширины); павильонная (сравнительно небольшая ширина).

По характеру расположения внутренних опор пролётные (размер пролёта преобладает над шагом колонн); ячейкого типа (имеют квадратную или близкую к ней сетку колонн); зальные (характерны большие пролёты – от 36 до 100м).

1. Назовите основные требования, предъявляемые к промышленным зданиям.

2. Назовите отличия промышленных зданий от гражданских.

3. Как классифицируют промздания по характеру расположения внутренних опор.

4. Какие промздания выполняют неотапливаемыми?

5. Какие типы покрытий используются в зданиях с плоскостными покрытиями.

Тема «Вопросы типизации и унификации промзданий»

Вопросы, подлежащие изучению:

1 Формы унификации объёмно- планировочных и конструктивных решений промзданий.

2 Система привязок конструктивных элементов к модульным разбивочным осям.

Унификация объёмно-планировочных и конструктивных решений промзданий имеет две формы – отраслевую и межотраслевую . Для удобства унификации объём промышленного здания расчленяют на отдельные части или элементы.

Объёмно-планировочным элементом или пространственной ячейкой называют часть здания с размерами, равными высоте этажа, пролёту и шагу.

Планировочным элементом или ячейкой называют горизонтальную проекцию объёмно-планировочного элемента. Объёмно-планировочные и планировочные элементы в зависимости от расположения их в здании могут быть угловые, торцевые, боковые, средние и элементы у температурного шва .

Температурным блоком называют часть здания, состоящую из нескольких объёмно-планировочных элементов, расположенных между продольными и поперечными температурными швами и торцевой или продольной стеной здания.

Унификация позволила сократить число типоразмеров конструкций и деталей и тем самым повысить серийность и снизить стоимость их изготовления, кроме того, было сокращено число типов зданий, созданы условия для блокирования и внедрения прогрессивных технологических решений.

Унификация объёмно-планировочных и конструктивных решений возможна только при наличии координации размеров конструкций и размеров зданий на основе единой модульной системы с применением укрупненных модулей .

В целях упрощения конструктивного решения одноэтажные промздания проектируют в основном с пролетами одного направления, одинаковой ширины и высоты.

Перепады высот в многопролетных зданиях менее 1.2м обычно не устраивают, поскольку они значительно усложняют и удорожают решения зданий. Шаг колонн по крайним и средним рядам принимают на основании технико-экономических соображений с учетом технологических требований. Обычно он составляет 6 или 12м. Возможен и больший шаг, но кратный укрупненному модулю 6м, если допускает высота здания и величина расчетных нагрузок.

В многоэтажных промышленных зданиях сетку колонн каркаса назначают в зависимости от нормативной полезной нагрузки на 1м2 перекрытия. Размеры пролетов назначают кратными 3м, шаг колонн кратным 6м. Высоты этажей многоэтажных зданий устанавливают кратными укрупненному модулю 0,6м, но не менее 3м.

Большое влияние на сокращение числа типоразмеров конструктивных элементов, а также на их унификацию оказывает расположение стен и других конструкций здания по отношению к модульным разбивочным осям.

Унификация промзданий предусматривает определенную систему привязки конструктивных элементов к модульным разбивочным осям. Она позволяет получить идентичное решение конструктивных узлов и возможность взаимозаменяемости конструкций.

Для одноэтажных зданий установлены привязки колонн крайних и средних рядов, наружных продольных и торцевых стен, колонн в местах устройства температурных швов и в местах перепада высот между пролетами одного или взаимно перпендикулярных направлений. Выбор «нулевой привязки » или привязки на расстоянии 250 или 500мм от наружной грани колонн крайних рядов зависит от грузоподъёмности мостовых кранов, шага колонн и высоты здания.

Такая привязка позволяет сократить типоразмеры конструктивных элементов, учитывать действующие нагрузки, устанавливать подстропильные конструкции и устраивать проходы по подкрановым путям.

Температурные швы, как правило, устраивают на спаренных колоннах. Ось поперечного температурного шва должна совпадать с поперечной разбивочной осью, а геометрические оси колонн смещают от нее на 500мм. В зданиях со стальным или смешанным каркасом продольные температурные швы выполняют на одной колонне с устройством скользящих опор.

Перепад высот между пролетами одного направления или при двух взаимно перпендикулярных пролетах устраивают на спаренных колоннах со вставкой с соблюдением правил для колонн крайнего ряда и колонн у торцевых стен. Размеры вставок 300, 350, 400, 500 или 1000мм.

В многоэтажных каркасных промзданиях разбивочные оси колонн средних рядов совмещают с геометрическими.

Колонны крайних рядов зданий имеют «нулевую привязку», либо внутреннюю грань колонн размещают на расстоянии а от модульной разбивочной оси.

Контрольные вопросы

1. Какое назначение имеет унификация и типизация в промышленном строительстве?

2. Что называется температурным блоком?

3. Как называются планировочные элементы в зависимости от их расположения в здании?

4. Как назначают сетку колонн в одно- и многоэтажных промзданиях?

5. Что означает «нулевая привязка»?

6. Как устраивают продольные температурные швы в зданиях со стальным или смешанным каркасом?

Тема «Каркас одноэтажных промзданий»

Вопросы, подлежащие изучению:

1 Элементы каркаса одноэтажных зданий.

2 Железобетонный каркас.

3 Стальной каркас.

Производственные одноэтажные здания строят, как правило, по каркасной схеме (рис. 16.1). Каркас применяют чаще всего железобетонный, реже стальной; в отдельных случаях может быть применен неполный каркас с несущими каменными стенами.

Каркасы производственных зданий, как правило, представляют собой конструкцию, состоящую из поперечных рам, образуемых колоннами, защемленными в фундаментах и шарнирно (или жестко) связанными с ригелями покрытия (балками или фермами). При наличии подвесного транспортного оборудования или подвесных потолков, а также при подвеске различных коммуникаций несущие конструкции покрытий в ряде случаев можно располагать через 6 м и применять подстропильные конструкции при шаге колонн 12 м. Если подвесного транспортного оборудования нет, стропильные балки и фермы располагают через 12 м, применяя плиты пролетом 12 м.

При стальном каркасе конструктивные схемы в основном аналогичны схемам из железобетона и определяются сочетанием основных элементов здания – балок, ферм, колонн, связанных в единое целое (рис. 16.2).

Рамные железобетонные каркасы являются основной несущей конструкцией одноэтажных производственных зданий и состоят из фундаментов, колонн, несущих конструкций покрытий (балок, ферм) и связей (см. рис. 16.1). Железобетонный каркас может быть монолитными и сборным. Преимущественное распространение имеет сборный железобетонный каркас из унифицированных элементов заводского изготовления. Такой каркас наиболее полно удовлетворяет требованиям индустриализации.

Для создания пространственной жесткости плоские поперечные рамы каркаса в продольном направлении связывают фундаментными, обвязочными и подкрановыми балками и панелями покрытия. В плоскостях стен каркасы можно усилить стойками фахверка, иногда называемого стеновым каркасом.

Фундаменты железобетонных колонн. Выбор рационального типа, формы и надлежащих размеров фундаментов существенно влияет на стоимость здания в целом. В соответствии с указаниями технических правил (ТП 101–81) бетонные и железобетонные отдельно стоящие фундаменты производственных зданий на естественном основании следует выполнять монолитными и сборно-монолитными (рис. 16.3). В фундаментах предусматривают уширенные отверстия – стаканы, имеющие форму усеченной пирамиды (рис. 16.3, I, III), для установки в них колонн. Дно стакана фундамента располагают на 50 мм ниже проектной отметки низа колонн, с тем чтобы подливкой раствора под колонну компенсировать возможные неточности размеров высоты колонн, допускаемые при их изготовлении, и выровнять верх всех колонн.

Размеры фундаментов определяют по расчету в зависимости от нагрузок и грунтовых условий.

Фундаментные балки предназначены для опирания наружных и внутренних стеновых конструкций на отдельно стоящие фундаменты каркаса (см. рис. 16.3, II, III, в, г). Для опирания фундаментных балок применяют бетонные столбики, устанавливаемые на цементном растворе на горизонтальные уступы башмаков или на фундаментные плиты. Установка стен на фундаментные балки кроме экономических создает также и эксплуатационные преимущества – упрощается устройство под ними всевозможных подземных коммуникаций (каналов, туннелей и т. п.).

Для защиты фундаментных балок от деформаций, вызванных увеличением объема при замерзании пучинистых грунтов, и для исключения возможности промерзания пола вдоль стен их засыпают с боков и снизу шлаком. Между фундаментной балкой и стеной по поверхности балки укладывают гидроизоляцию, состоящую из двух слоев рулонного материала на мастике. Вдоль фундаментных балок на поверхности грунта устраивают тротуар или отмостку. Для стока воды тротуарам или отмосткам придают уклон 0,03 – 0,05 от стены здания.

Колонны. В одноэтажных промышленных зданиях применяют обычно унифицированные сплошные железобетонные одноветвевые колонны прямоугольного сечения (рис. 16.5, a) и сквозные двухветвевые (рис. 16.5, б). Прямоугольные унифицированные колонны могут иметь размеры сечения: 400х400, 400х600, 400х800, 500х500, 500х800 мм, двухветвевые – 500х1000, 500х1400, 600x1900 мм и др.

Высоту колонн подбирают в зависимости от высоты помещения Н и глубины их заделки а в стакан фундамента. Заделка колонн ниже нулевой отметки в зданиях без мостовых кранов равна 0,9 м; в зданиях с мостовыми кранами 1,0 м – для одноветвевых колонн прямоугольного сечения, 1,05 и 1,35 м – для двухветвевых колонн.

Для укладки подкрановых балок на колоннах устраивают подкрановые консоли. Верхнюю надкрановую часть колонны, поддерживающую несущие элементы покрытия (балки или фермы), называют надколонником. Для крепления несущих элементов покрытия к колонне в верхнем ее торце закрепляют стальной закладной лист. В местах крепления к колонне подкрановых балок и стеновых панелей (рис. 16.7) располагают стальные закладные детали. Колонны с элементами каркаса сопрягают сваркой стальных закладных деталей с последующим их обетонированием, причем в колоннах, расположенных по наружным продольным рядам, предусматривают также стальные детали для крепления к ним элементов наружных стен.

Связи между колоннами. Вертикальные связи, расположенные по линии колонн здания, создают жесткость и геометрическую неизменяемость колонн каркаса в продольном направлении (рис. 16.8 а , б). Их устраивают для каждого продольного ряда в середине температурного блока. Температурным блоком называют участок по длине здания между температурными швами или между температурным швом и ближайшей к нему наружной стеной здания. В зданиях малой высоты (при высоте колонн до 7...8 м) связи между колоннами можно не устраивать, в зданиях большей высоты предусматривают крестовые или портальные связи. Крестовые связи (рис. 16.8, а) применяют при шаге 6 м, портальные (рис. 16.8, б) – 12 м, их выполняют из прокатных уголков и соединяют с колоннами путем сварки косынок крестов с закладными деталями (рис. 16.7, г).

Плоские несущие конструкции покрытий. К ним относят балки, фермы, арки и подстропильные конструкции. Несущие конструкции покрытия изготовляют из сборного железобетона, стали, дерева. Тип несущих конструкций покрытия назначают в зависимости от конкретных условий – величины перекрываемых пролетов, действующих нагрузок, вида производства, наличия строительной базы и др.

Железобетонные балки покрытий. В качестве несущих конструкций в ряде случаев используют железобетонные предварительно напряженные балки пролетом до 12 м для односкатных и малоуклонных покрытий, двускатные решетчатые пролетом 12 и 18 м (рис. 16.10, а в) – при наличии подвесных монорельсов и кран-балок. Односкатные балки предназначены для зданий с наружным водоотводом, двускатные можно применять в зданиях как с наружным, так и внутренним водоотводом. Уширенную опорную часть балки (рис. 16.10, г) прикрепляют к колонне шарнирно посредством анкерных болтов, выпущенных из колонн и проходящих через опорный лист, приваренный к балке.

Железобетонные фермы и арки покрытий. Очертание фермы покрытия зависит от вида кровли, расположения и формы фонаря и общей компоновки покрытия. Для зданий пролетом 18 м и более применяют железобетонные предварительно напряженные фермы из бетона марки 400, 500 и 600. Фермы предпочтительнее балок при наличии различных санитарно-технических и технологических сетей, удобно располагаемых в межферменном пространстве, и при значительных нагрузках от подвесного транспорта и покрытия.

В зависимости от очертания верхнего пояса различают фермы сегментные, арочные, с параллельными поясами и треугольные.

Для пролетов 18 и 24 м применяют раскосные фермы сегментного очертания (рис. 16,11, б), а также типовые безраскосные фермы при скатной и малоуклонной кровлях (рис. 16.11, а). Последние обладают определенными преимуществами (удобный пропуск коммуникаций, особенности технологии изготовления).

Фермы с параллельными поясами использованы главным образом на многих действующих предприятиях при пролетах зданий 18 и 24 м и шаге 6 и 12 м. В некоторых случаях для покрытия большепролетных производственных зданий применяют сборные железобетонные арочные конструкции. По конструктивной схеме арки разделяют на двухшарнирные (с шарнирными опорами), трехшарнирные (имеющие шарниры в ключе и на опорах) и бесшарнирные.

Стальные каркасы применяют в цехах при крупных пролетах и значительных крановых нагрузках при строительстве предприятии металлургии, машиностроения и др.

По своей конструктивной схеме стальной каркас в целом подобен железобетонному и представляет собой основную несущую конструкцию промышленного здания, поддерживающую покрытие, стены и подкрановые балки, а в некоторых случаях – технологическое оборудование и рабочие площадки.

Основными элементами несущего стального каркаса, воспринимающими почти все действующие на здание нагрузки, являются плоские поперечные рамы, образованные колоннами и стропильными фермами (ригелями) (рис. 16.14, I, а). На поперечные рамы, расставленные согласно принятому шагу колонн, опирают продольные элементы каркаса – подкрановые балки, ригели стенового каркаса (фахверка), прогоны покрытия и в некоторых случаях фонари. Пространственная жесткость каркаса достигается устройством связей в продольном и поперечном направлениях, а также (при необходимости) жестким закреплением ригеля рамы в колоннах.

1. Какой фактор является предопределяющим при определении объёмно-планировочной и конструктивной структуры промышленного здания.

2. Какие здания относят к обслуживающим?

3. Как классифицируются промздания по характеру расположения внутренних опор?

4. В каких случаях в качестве основного материала несущих элементов применяют металл?

5. Каким подъёмно-транспортным оборудованием могут быть оснащены промздания.

Тема «Каркасы многоэтажных промзданий»

Вопросы, подлежащие изучению:

1 Общие сведения.

2 Конструктивные схемы зданий.

Многоэтажные промышленные здания служат для размещения различных производств – цехов лёгкого машиностроения, приборостроения, химической, электротехнической, радиотехнической, лёгкой промышленности и др., а также базисных складов, холодильников, гаражей и т.п. Их проектируют, как правило, каркасными с навесными панелями стен.

Высоту промышленных зданий обычно принимают по условиям технологического процесса в пределах 3…7 этажей (при общей высоте до 40м), а для некоторых видов производств с нетяжёлым оборудованием, устанавливаемым на перекрытиях, - до 12…14 этажей. Ширина промышленных зданий может быть равной 18…36м и более. Высоту этажей и сетку колонн каркаса назначают в соответствии с требованиями типизации элементов конструкций и унификации габаритных параметров. Высоту этажа принимают кратной модулю 1,2м, т.е. 3,6; 4,8; 6м, а для первого этажа – иногда 7,2м. Наиболее распространенная сетка колонн каркаса 6х6, 9х6, 12х6м. Такие ограниченные размеры сетки колонн обусловлены большими временными нагрузками на перекрытия, которые могут достигать 12 кН/м2, а в некоторых случаях 25 кН/м2 и более.

Основные несущие конструкции многоэтажного каркасного здания – железобетонные рамы и связывающие их междуэтажные перекрытия. Каркас состоит из колонн, ригелей, расположенных в одном или в двух взаимно перпендикулярных направлениях, плит перекрытий и связей в виде ферм или сплошных стенок, выполняющих функции диафрагм жёсткости. Ригели могут опираться на колонны по консольной или бесконсольной схемам с размещением плит на полках ригелей или по их верху.

Колонны каркасов состоят из нескольких монтажных элементов высотой на один, два или три этажа. Сечение колонн прямоугольное 400х400 или 400х600мм с трапециидальными консолями, предназначенными для опирания ригелей. У крайних колонн - консоли с одной стороны, у средней – с двух сторон.

Колонны изготовляют из бетона классов В20…В50, рабочую арматуру – из горячекатаной стали периодического профиля класса А-III.Стыки колонн располагают над перекрытиями на высоте 0,6…1м. Конструкция стыка должна обеспечивать его равнопрочность с основным сечением колонны.

Ригели бывают прямоугольные (при опирании плит сверху ригелей) и с опорными полками (при опирании плит в одном уровне с ригелями).Высота ригелей унифицирована:800мм для сетки колонн 6х6м, 6х9м. В ригелях для зданий с сеткой колонн 6х6м применяют ненапрягаемую рабочую арматуру из стержневой стали класса А-III и бетон класса В20 и В30, а в ригелях для зданий с сеткой колонн 9х6м – предварительно-напряжённую арматуру из стали классов А-IIIв и А-IV.

Конструкции междуэтажных балочных перекрытий изготовляют в двух вариантах – с опиранием плит на полки ригелей и с опиранием поверх прямоугольных ригелей. Размеры основных плит, укладываемых на полки ригеля, - 1,5 х 5,55 или 1,5 х 5,05 м (для укладки у торца здания и у деформационных швов). При укладке поверх ригелей приняты плиты размером 1,5 х 6 м. Доборные плиты имеют ширину 0,75м при обычной длине.

Безбалочные перекрыти я в многоэтажных производственных зданиях имеют меньшую высоту, чем балочные, благодаря чему при их применении уменьшается объём здания. Кроме того, при безбалочных перекрытиях упрощается прокладка трубопроводов под плоским потолком и создаются лучшие условия для вентилирования пространства под ним.

Железобетонный сборный каркас состоит из колонн высотой на один этаж, капителей, надколонных и пролётных плит сплошного сечения. Колонны с размерами 400 х 400, 500 х 500 и 600 х 600мм в месте опирания капителей имеют четырёхсторонние консоли и пазы по граням ствола. Основная капитель имеет в центре квадратное отверстие, по граням которого устроены пазы. Для пропуска инженерных коммуникаций предусмотрены капители с круглыми отверстиями диаметром 100 и 200 мм. На торцах плит имеются выпуски арматуры.

В зданиях с безбалочными конструкциями могут быть самонесущие кирпичные стены, самонесущие вертикальные и навесные горизонтальные стеновые панели. Каркасное здание рассматривают как систему многоярусных многопролётных рам с жёсткими узлами, работающих в двух направлениях. Образуют эти рамы колонны, капители и надколонные плиты.

1. Какие элементы входят в состав многоэтажных промзданий.

2. Какие конструктивные решения применяют в балочных перекрытиях?

3. Назовите элементы безбалочных перекрытий.

4. Назначение капителей в составе безбалочных перекрытий.

5. Какие стены используют в зданиях с безбалочными перекрытиями.

Тема «Покрытия промзданий»

Вопросы, подлежащие изучению:

1 Общие сведения.

2 Покрытие по ж/б панелям.

3 Покрытия по стальным профилированным настилам.

В состав ограждающейчасти покрытий могут входить: кровля (водоизоляционный слой) – чаще всего рулонный ковёр, реже асбестоцементные волнистые листы и др.; выравнивающий слой – стяжка из асфальта или цементного раствора; теплозащитный (термоизоляционный) слой, который в зависимости от местных условий может состоять из плит пено- и керамзитобетоных, минеральной пробки и т.п.; пароизоляция , предохраняющая теплоизоляционный слой от увлажнения водяными парами, проникающими в покрытие из помещения; несущий настил , поддерживающий ограждающие элементы покрытий.

По степени утепления ограждающие конструкции покрытий производственных зданий Разделяют на холодные и утеплённые . В неотапливаемых помещениях или горячих цехах со значительными выделениями производственной теплоты ограждения покрытия проектируют холодные (изоляционный слой не укладывают). В помещениях отапливаемых зданий покрытия предусматривают утеплённые, причём степень утепления определяют, исходя из требования предотвращения конденсации влаги на внутренней их поверхности.

В неотапливаемых производственных зданиях массового строительства часто в качестве несущих элементов покрытий применяют предварительно-напряжённые ж/бетонные ребристые плиты длиной 6 и 12м обычно при ширине 3 и реже 1,5м. В отапливаемых зданиях при шаге несущих стропильных конструкций покрытия, равном 6м, используют панели из лёгких, ячеистых и других бетонов. Находят широкое применение комплексные настилы , которые совмещают все необходимые функции и поступают с завода в полной готовности с уложенной пароизоляцией, утеплителем, стяжкой и пр. После укладки настила заделывают швы, укладывают защитный слой и выполняют другие нетрудоёмкие операции.

Следует предусмотреть укладку плит на несущие конструкции покрытия так, чтобы обеспечить плотность их опирания и надёжность крепления стальных закладных деталей между собой, а также последующее замоноличивание стыков.

Различные типы стального профилированного несущего настила за последнее время получили применение в промышленном строительстве. Его изготовляют из стали толщиной 0,8…1,0мм с высотой ребра 60…80мм при ширине листов настила до 1250мм и длине до 12м. Настил укладывают по прогонам или несущим конструкциям покрытия и крепят к стальным конструкциям покрытия (фонарям и прогонам) самонарезающимися болтами диаметром 6мм. Между собой элементы настила соединяют на специальных заклёпках диаметром 5мм.

Контрольные вопросы

Тема «Световые и аэрационные фонари»

Вопросы, подлежащие изучению:

1 Классификация фонарей и их конструктивные схемы.

2 Светоаэрационные фонари.

3 Зенитные фонари.

По назначению фонари в промышленных зданиях подразделяют на световые, светоаэрационные и аэрационные. Они обеспечиваютверхнее естественное освещение и при необходимости вентилирование зданий.Фонари, как правило, располагают вдоль пролетов здания.

Фонарь состоит из несущей конструкции – каркаса и ограждающих конструкций – покрытия, стен и заполнения световых или аэрационных проемов.

По форме фонари подразделяют на двусторонние, односторонние (шеды) и зенитные. Двусторонние и односторонние фонари могут иметь вертикальное и наклонное остекление. В связи с этим поперечный профиль фонаря может быть: прямоугольным, трапецеидальным, зубчатым и пилообразным .

В целях удобства эксплуатации (снегоочистка) и по противопожарным требованиям длина фонарей должна быть не более 84м. Если требуется большая длина, то фонари устраивают с разрывами, величина которых 6м. По этим же причинам фонарь не доводят до торцевых стен на 6м.

Размеры конструктивных схем фонарей унифицированы и согласованы с основными габаритами здания. Обычно для 12-ти и 18-ти метровых пролетов принимают фонари шириной 6м, а для пролетов 24, 30 и 36м – 12м. Высоту фонаря определяют на основании световых и аэрационных расчетов.

Светоаэрационные фонари разработаны шириной 6 и 12м под профнастил и ж/б плиты при шаге стропильных конструкций 6 и 12м. Они представляют собой П-образную надстройку на покрытии здания, в продольных и торцевых стенах которой световые проемы заполнены переплетами. Несущие конструкции фонарей состоят из фонарных панелей, фонарных ферм, панелей торца. П-образные стальные рамы фонаря устанавливают на несущие конструкции покрытия здания. Рама представляет собой стержневую систему, состоящую из вертикальных стоек, верхнего пояса и раскосов, все элементы которой выполняют из прокатного металла и соединяют между собой при помощи фасонок на сварке и болтах.

Устойчивость каркаса фонаря обеспечивается устройством горизонтальных и вертикальных связей. Горизонтальные и вертикальные крестообразные связи устанавливают в крайних панелях у деформационных швов, а в плоскости ригелей поперечных рам – распорки.

Зенитные фонари выполняются в виде прозрачных куполов с двухслойными светопропускающими элементами из органического стекла или в виде возвышающихся над кровлей остекленных поверхностей. Их используют в тех случаях, когда необходимы высокий уровень и равномерность освещенности помещений. Зенитные фонари могут быть точечного типа или панельные. Форма колпака в плане может быть круглой, квадратной или прямоугольной, с вертикальными или наклонными, холодными или утепленными стенками бортового элемента. Для повышения светоактивности фонарей внутреннюю поверхность их бортовых элементов делают гладкой и окрашивают в светлые тона. Обычно конструкция панельных фонарей состоит из нескольких точечных фонарей, соединенных в ряд.

Конструкция зенитных фонарей состоит из светопропускающего заполнения, стального стакана, нащельников, фартуков и при необходимости механизмов открывания. Светопропускающее заполнение для всех зенитных фонарей приняты наклонными под углом 12 к плоскости покрытия. Для светопропускающего заполнения используют двухслойные стеклопакеты толщиной 32мм из оконного силикатного стекла толщиной 6мм или профильное стекло швеллерного типа.

Каркасом зенитных фонарей являются стальные стаканы, элементы которых (продольные и поперечные стержни, переплеты, сетка и т.д.) соединяются в основном на болтах. Фартуки зенитных фонарей изготовляют из оцинкованной стали толщиной 0,7мм. В фонаре размером 3х3м стыки между стеклопакетами в продольном и поперечном направлениях перекрывают алюминиевыми нащельниками, прикрепляемыми к опорным элементам стакана. Края стеклопакетов вдоль нижней части ската оклеивают алюминиевой фольгой.

Для освещения больших площадей при значительной высоте цеха зенитные фонари располагают сосредоточенно. Например, на одной плите размером 1,5х6м можно разместить четыре фонаря с размером основания 0, х 1,3м.

1. В каких зданиях могут применяться световые и аэрационные фонари, каково их назначение?

2. Каким может быть поперечный профиль фонарей, зарисуйте их.

3. Назовите основные унифицированные размеры фонарей. Как определяется их высота?

4. Перечислите основные элементы светоаэрационных фонарей.

5. Как обеспечивается устойчивость каркаса фонаря?

6. В каких случаях используют зенитные фонари?

7. Назовите элементы конструкции зенитного фонаря.

8. Из чего выполняют светопропускающее заполнение для зенитных фонарей?

Тема «Полы промышленных зданий»

Вопросы, подлежащие изучению:

1. Общие сведения

2. Конструктивные решения полов

3. Примыкание полов к каналам и приямкам

В промышленных зданиях полы устраивают по перекрытиям и по грунту. Полы испытывают воздействия, зависящие от характера технологического процесса. На конструкцию пола передаются статические нагрузки от массы различного оборудования, людей, складированных материалов, полуфабрикатов и готовых изделий. Также возможны вибрационные, динамические и ударные нагрузки. Для горячих цехов характерны тепловые воздействия на пол. В некоторых случаях на полы воздействуют воды и растворы нейтральной реакции, минеральные масла и эмульсии,органические растворители, кислоты, щелочи, ртуть. Эти воздействия могут быть систематические, периодические или случайные.

К полам промышленных зданий, кроме обычных, предъявляются и специальные требования: повышенная механическая прочность, хорошая сопротивляемость истиранию, несгораемость и жаростойкость, стойкость в отношении физико-химических и биологических воздействий, при взрывоопасных производствах полы не должны давать искр при ударах и движении безрельсового транспорта, полы должны обладать диэлектричностью, по возможности быть бесшовными.

При выборе типа пола в первую очередь учитывают те требования, которые в условиях данного производства наиболее важные.

Конструктивные схемы полов. Конструкция пола состоит из покрытия,прослойки,стяжки, гидроизоляции, подстилающего слоя и тепло- или звукоизоляционных слоев.

В промышленных зданиях полы классифицируют в зависимости от типа и материала покрытия и подразделяют на три основные группы.

Первая группа - полы сплошные или бесшовные. Они могут быть:

а) на основе естественных материалов : земляные, гравийные, щебеночные, глинобитные, глинобетонные, комбинированные;

б) на основе искусственных материалов : бетонные, сталебетонные, мозаичные, цементные, шлаковые, асфальтовые, асфальтобетонные, дегтебетонные, ксилолитовые, полимерные.

Вторая группа - полы из штучных материалов. Они могут быть: каменные, булыжные, брусчатые, кирпичные и клинкерные; из плиток и плит бетонных, железобетонных, металлоцементных, мозаичных террацо,асфальтовых,дегтебетонных,ксилолитовых,керамических,чугунных,стальных,пластмассовых,древесно-волокнистых,литых шлаковых, шлакоситаловых; деревянные - торцовые и дощатые.

Третья группа - полы из рулонных и листовых материалов : рулонные - из линолеума, релина, синтетических ковров; листовые - из винипласта, древесно-волокнистых и древесно-стружечных листов.

2.1 Полы сплошные или бесшовные

Земляные полы устраивают в цехах, где возможны воздействия на пол больших статических и динамических нагрузок, а также высоких температур. Земляной пол выполняют чаще всего в один слой толщиной 200-300 мм с послойным утеплением.

Гравийные, щебеночные, шлаковые полы применяют в проездах для транспорта на резиновом ходу и в складах. Гравийные и щебеночные полы устраивают из двух или трех слоев гравия или щебня. Покрытие пола представляет собой гравийно-песчаную смесь толщиной 100-200 мм с последующим уплотнением катками. Для шлаковых полов используют каменноугольные шлаки.

Бетонные полы применяют в помещениях, где пол подвергается систематическому увлажнению или воздействию минеральных масел, а также в проездах при движении транспорта на резиновых и металлических шинах и гусеничном ходу.

Толщина покрытия зависит от характера механического воздействия и может быть 50-100 мм; покрытие делают из бетона марок 200 - 300. Поверхность пола после начала схватывания бетона затирают. Для увеличения прочности покрытия бетонного пола в его состав добавляют стальные или чугунные стружки и опилки крупностью до 5 мм.

Цементные полы применяют в тех же случаях, что и бетонные, но при отсутствии больших нагрузок, их выполняют толщиной 20-30 мм из цементного раствора составов 1:2 – 1:3 на цементах марки 300 - 400. Из-за большой хрупкости цементно-песчаного покрытия под него устраивают жесткий подстилающий слой.

Контрольные вопросы

1. Какие требования предъявляют к полам промзданий?

2. Какие типы полов применяют в промзданиях?

3. От каких факторов зависит толщина покрытия

4. Какие полы относят к бесшовным?

5. Назовите воздействия на полы промзданий.

Тема «Кровли. Водоотвод с покрытий»

Вопросы, подлежащие изучению:

1 Кровли промзданий.

2 Водоотвод с покрытий.

В современном промышленном строительстве применяют скатные, малоуклонные кровли с гидроизоляционным ковром из рулонных материалов – рубероида, стеклоткани, гидроизола и др. В большинстве случаев рекомендуют покрытия отапливаемых зданий с рулонной или мастичной (безрулонной) кровлей проектировать малоуклонными, т.е. с уклонами от 1.5 до 5%. В случаях применения более теплостойких мастик на отдельных участках допускается проектировать покрытия с несколько большим уклоном. В некоторых случаях устраивают кровли из волнистых асбестоцементных и алюминиевых листов.

Конструкции плоской кровли отличаются следующими качествами: многослойностью, относительной легкоплавкостью и высокой пластичностью приклеивающей мастики; применяемый тонкий рулонный материал приклеивается ровными слоями; поверх ковра устраивают защитное двойное покрытие из мелкого гравия (или шлака) на горячей мастике для надёжной защиты ковра от прямого механического и атмосферного воздействия.

Заполняемые водой плоские кровли выполняются из четырёх слоёв толь-кожи, гидроизола, дегтебитумного материала с двумя защитными слоями из гравия. В местах примыкания кровель к парапетам (см. рис.1), стенам, шахтам и другим выступающим конструктивным элементам основной водоизолирующий ковёр усиливают дополнительными слоями рулонных или мастичных материалов. Верхний край дополнительного водоизоляционного ковра должен подниматься над кровлей на 200…300 мм. Его закрепляют и защищают от затекания воды и воздействия солнечной радиации фартуками из оцинкованной кровельной стали.

Отвод воды с кровель отапливаемых многопролётных зданий, как правило, следует предусматривать по внутренним водостокам . Покрытие с наружным отводом воды допускается проектировать при отсутствии на площадке дождевой канализации, высоте зданий не более 10м и общей длине покрытия (с уклоном в одну сторону) не более 36м при соответствующем обосновании. Наружный водоотвод в одноэтажных однопролётных производственных зданиях принимают обычно произвольным , т.е. неорганизованным .

В неотапливаемых производственных зданиях следует проектировать свободный сброс воды с покрытия.

При внутреннем водоотводе расположение водоприёмных воронок, отводных труб и стояков, собирающих и отводящих воду в дождевую канализацию, назначают в соответствии с Размерами площади покрытия и очертания его поперечного сечения. Из стояка вода поступает в подземную часть водоотводной сети, которую можно устраивать из бетонных, асбестоцементных, чугунных, пластмассовых или керамических труб в зависимости от местных условий (рис.1, а).

Для обеспечения надёжного отвода воды в сеть внутренних водостоков особое значение имеет конструкция ендов кровельного покрытия. Необходимый уклон в сторону водоприёмных воронок создают укладкой в ендовах слоя лёгкого бетона переменной толщины, образующего водораздел. По периметру здания с внутренними водостоками предусматривают парапеты (рис.1, б), а при наружном свободном сбросе воды с кровли – карнизы (рис.2).Система внутренних водостоков с кровли состоит из водоприёмных воронок, стояков, отводных трубопроводов и выпусков в канализацию.

Водонепроницаемость кровель в местах установки водосточных воронок достигается наклейкой на фланец чаши воронки слоёв основного водоизоляционного ковра с усилением тремя мастичными слоями, армированного двумя слоями стеклохолста или стеклосетки (рис.1, г).

При отводе воды по внутренним водостокам необходимо предусматривать равномерное Размещение воронок по площади кровли.

Максимальное расстояние между водосточными воронками на каждой продольной разбивочной оси здания не должно превышать для скатных кровель 48 м, малоуклонных (плоских) – 60 м. В поперечном направлении здания на каждой продольной разбивочной оси здания следует располагать не менее двух воронок.

При определении расчётной водосборной площади следует дополнительно учитывать 30% суммарной площади вертикальных стен, примыкающих к кровле и возвышающихся над ней.

1. Какими качествами отличается конструкция плоской кровли.

2. Как решают места примыкания плоских кровель к парапетам?

3. Как решается отвод воды с кровель промышленных зданий?

4. Какой водоотвод используют в неотапливаемых зданиях.

5. Из каких элементов состоит система внутренних водостоков.

1. Какие элементы входят в состав покрытий.

2. В каких помещениях используют холодные покрытия?

3. Назовите состав комплексной панели.

4. Назначение пароизоляции в составе покрытия.

5. Как крепят стальные профилированные листы.

Тема «Прочие конструктивные элементы промзданий»

Вопросы, подлежащие изучению:

1 Устройство технических этажей, рабочих площадок и этажерок.

2 Перегородки, ворота и лестницы специального назначения.

В многоэтажных крупнопролетных промышленных зданиях для производств с технологическими процессами, требующими больших складских и вспомогательных площадей, целесообразно устраивать технические этажи . Их также устраивают для размещения установок кондиционирования воздуха, приточно-вытяжной вентиляции, воздуховодов, транспортных и других инженерных коммуникаций.

В универсальных многоэтажных пром.зданиях для перекрытия пролетов 12-36 м применяют несущие конструкции в виде балок, ферм, арок с шагом 3-6м. Высота их (2-3 м) обеспечивает возможность размещения в межбалочном, межферменном или в межарочном пространстве технических или вспомогательных этажей.

Технические этажи устраивают и в одноэтажных пром.зданиях. Их можно Располагать в подвалах, при решетчатых несущих конструкциях покрытия – в пространстве между ними, а при сплошных – технические этажи выполняют подвесными.

Подвесной потолок служит одновременно полом технического этажа и устроен из ребристых железобетонных плит, уложенным по ж/б балкам таврового сечения. Балки подвешены к несущим конструкциям покрытия.

Рабочие или технологические площадки устраивают для обслуживания надземного транспортного хозяйства цеха (подвесные и мостовые краны), инженерного (вентиляторы, камеры кондиционирования и др.) и технологического оборудования (домны, котлы и др.). В зависимости от назначения их подразделяют на переходные, посадочные, ремонтные и смотровые .

Рабочие площадки используют и для размещения на них технологического оборудования. В химической, нефтяной и др. отраслях промышленности получили большое распространение рабочие площадки в виде этажерок, ав металлургической промышленности – в виде одноярусных эстакад.

Переходные, посадочные, ремонтные, смотровые, а также рабочие площадки под легкое технологическое оборудование состоят из балочной несущей конструкции, настила и ограждения. Несущие конструкции площадок опирают либо на основные конструкции здания, либо на технологическое оборудование, либо на специально устраиваемые опоры.

В практике строительства получили распространение стальные сборно-разборные перегородки. Основное достоинство таких перегородок – их технологическая гибкость. Этажерки имеют каркас, решенный по связевой схеме, с шарнирным соединением ригелей и колонн и жестким соединением колонн с колоннами. Максимальная высота этажерок 18м.

Каркас состоит из колонн, связей и парных ригелей, которые опираются на колонны при помощи съёмных металлических консолей. Консоли крепят к колоннам стяжными болтами на любой высоте, кратной 120мм. Ригели располагают в поперечном направлении. Жесткость каркаса достигается с помощью металлических связей – портальных в поперечном направлении и крестовых с распорками в продольном направлении. Плиты перекрытий укладывают по ригелям в продольном направлении без закрепления, что позволяет устраивать проемы в любых участках перекрытий.

Сборные конструкции этажерок имеют сетку колонн каркаса с пролетами 4,5 – 9м, кратными 1,5м при шаге 6м. В поперечном направлении можно иметь консольные участки перекрытий с вылетом 1,5 или 3м.

Отличительной особенностью перегородок , устраиваемых в промышленных зданиях в том, что их в большинстве случаев устраивают сборно-разборными на высоту, меньшую высоты помещений цеха. Такое решение обеспечивает быстрый демонтаж в случае изменения технологического процесса производства. Стационарные перегородки выполняют из кирпича, мелких блоков, плит или крупных панелей из несгораемых материалов.

Сборно-разборные перегородки устраивают из щитов или панелей, выполняемых из дерева, металла, железобетона, стекла или пластмассы. Устойчивости щитовой перегородки достигают путем введения в конструкцию легкого каркаса, состоящего из стоек и обвязок, расположенных вверху или внизу. Стойки каркаса устанавливают на специальные фундаментные плиты.

В последнее время получают все большее распространение перегородки из легких эффективных материалов – слоистых пластиков, стеклопластиков, асбестоцементных листов, древесно-волокнистых или древесно-стружечных плит с легкими металлическими каркасами.

Для ввода в промышленное здание транспортных средств, перемещения оборудования и прохода большого числа людей устраиваютворота . Их размеры увязывают с требованиями технологического процесса и унификации конструктивных элементов стен. Так, для пропуска электрокаров, вагонеток применяют ворота шириной 2м и высотой 2,4м, для автомашин различной грузоподъёмности – 3х3, 4х3 и 4х3,6 м, для узкоколейного транспорта – 4х4,2м, а для железнодорожного транспорта широкой колеи 4,7х5,6м.

По способу открывания ворота подразделяют на распашные, раздвижные, складчатые (многостворчатые), подъемные, шторные, откатные многостворчатые . Полотна ворот выполняют из дерева, из дерева со стальным каркасом и из стали. Ворота могут быть утепленными, холодными, с калитками и без них.

Широко применяются распашные ворота. Если размер полотен небольшой, ворота выполняют из дерева. При высоте или ширине ворот более 3м устраивают ворота со стальным каркасом. Деревянные полотна ворот состоят из обвязки с одним или несколькими средниками и обшивки из шпунтованных досок толщиной 25мм в один или два слоя. Рама, к которой навешивают полотна ворот, может быть выполнена из дерева, металла или железобетона.

Лестницы в промышленных зданиях подразделяют на основные, служебные, пожарные и аварийные.

Основные лестницы предназначены для сообщения между этажами, а также для эвакуации людей в случае пожара и аварии.

Служебные лестницы обеспечивают связь с рабочими площадками, на которых установлено оборудование, а в некоторых случаях их применяют для дополнительной связи между этажами. Служебные лестницы обслуживают также посадочные и ремонтные площадки мостовых кранов.

Пожарные лестницы предназначены в случае пожара для доступа в верхние этажи и на покрытие здания. Аварийные лестницы используют только для эвакуации людей из здания на случай пожара и аварии. Запасными путями эвакуации помимо основных аварийных и пожарных лестниц могут быть специально устраиваемые как внутри, так и снаружи здания спуски и штанги.

Служебные лестницы делают открытыми, сквозной конструкции и с крутым подъёмом. Служебная лестница состоит из промежуточных площадок и сборных лестничных маршей. Несущей конструкцией марша служат две тетивы из полосовой или уголковой стали, к которым прикрепляют ступени, имеющие только проступь. При уклоне лестницы до 60 ступени выполняют из листовой рифлёной стали с отогнутым для жесткости передним краем.

Пожарные металлические лестницы располагают по периметру здания через 200м в производственных и через 150м во вспомогательных зданиях в тех случаях, когда высота до верха карниза превышает 10м. При высоте здания менее 30м лестницы устраивают вертикальными шириной 600мм, а при высоте 30м и более – наклонными под углом не более 80 шириной 700мм с промежуточными площадками не реже, чем через 8м по высоте.

Пожарные лестницы устанавливают против простенков, не доводят до уровня земли на 1,5-1,8м и при наличии на покрытии фонарей выводят между ними.

Аварийные стальные лестницы имеют такую же конструкцию, как служебные или пожарные, но их обязательно доводят до земли. Уклон их маршей должен быть не более 45, ширина не менее 0,7 м, а расстояние по вертикали между площадками не более 3,6 м.

1. Какое назначение имеют технические этажи и рабочие площадки?

2. Как по назначению подразделяются технологические площадки.

3. Из каких элементов состоит каркас сборных этажерок?

4. Назовите преимущества сборно-разборных перегородок. Из каких материалов они выполняются?

5. Назначение ворот в промзданиях. Как назначают их размеры?

6. Как подразделяют ворота по способу открывания?

7. Назовите виды лестниц, используемых в промзданиях.

8. Какая разница между пожарными и аварийными лестницами?

9. Какую конструкцию имеют служебные лестницы?

10. В каких местах промзданий устанавливают пожарные металлические лестницы?

Пролет - расстояние между разбивочными осями в направлении несущих конструкций (для ж/б каркасов: 6, 12, ..., 24 м, для металлических каркасов: 6, 12, ... 36 м).

Шаг - расстояние между разбивочными осями в направлении перпендикулярном пролету (6, 12м)

Высота этажа - (1) для многоэтажных зданий: расстояние от пола лестничной клетки данного этажа до пола последующего этажа; (2) для одноэтажных зданий: расстояние от пола до низа стропильной конструкции (3, 3.3, 3.6, 4.2 ... 18 м)

Конфигурация и размеры плана, высота и профиль промышленного здания определяются параметрами, количеством и взаимным расположением пролетов. Эти факторы зависят от технологии производства, характера выпускаемой продукции, производительности предприятия, требований санитарных норм и пр.
Ширина пролета в промышленном здании (L) – расстояние между продольными координационными осями – складывается из величины пролета мостового крана (Lк) и удвоенного расстояния между осью рельса подкранового пути и модульной координационной осью (2К): L= Lк + 2К (рис.1).


Рис. 1. К определению параметров пролета


Пролеты мостовых кранов увязаны с шириной пролетов и определяются ГОСТом. Величину К принимают: 750 мм при кранах грузоподъемностью Q ≤ 500 кН; 1000 мм (и более кратно 250 мм) при Q > 500 кН, а также при устройстве в надкрановой части колонн прохода для обслуживания подкрановых путей.
Минимально допустимая ширина пролетов, определяемая условиями технологии производства (габариты и характер оборудования, система его расстановки, ширина проездов и др.) не всегда экономически целесообразна. Цеха равновеликие по площади и имеющие одинаковую длину могут быть как мелкопролетными, так и крупнопролетными, а в некоторых случаях и большепролетными. Например, здание шириной 72 м может быть сформировано шестью пролетами размером 12 м, четырьмя пролетами по 18 м, тремя пролетами по 24 м, двумя – по 36 м или одним пролетом шириной 72м. При этом надо помнить, что большепролетные здания, имея укрупненную сетку осей, являются высоко универсальными в технологическом отношении.
Шаг колонн – расстояние между поперечными координационными осями – назначают с учетом габаритов и способа расстановки технологического оборудования, размеров выпускаемых изделий, вида внутрицехового транспорта. Так, при крупногабаритном оборудовании и больших изделиях шаг колонн назначают большим, что повышает эффективность использования производственных площадей, но усложняет конструкции покрытия и подкрановых путей. В основном принимают шаг колонн равным 6 или 12 м.
Высота пролета – расстояние от уровня чистого пола до низа несущих конструкций покрытия – зависит от технологических, санитарно-гигиенических и экономических требований, предъявляемых к промышленному зданию. Складывается она в пролетах с мостовыми кранами из расстояний от уровня чистого пола до верха кранового рельса Н1 и расстояния от верха рельса до низа несущей конструкции покрытия Н2 (рис. 1).
Одноэтажные здания, как правило, проектируют с параллельными пролетами одинаковой ширины и высоты. В случаях технологической необходимости здания проектируют с взаимно-перпендикулярными пролетами разной ширины и высоты. В последних случаях перепады высот рекомендуется совмещать с продольными температурными швами, а величину разницы в высотах назначать кратной 0,6 м и не менее 1,2 м.

Конструктивные решения промышленных зданий

Конструктивные системы промышленных зданий выполняют по различным конструктивным схемам. В основном для промышленных зданий применяют каркасную схему, в которых прочность, жесткость и устойчивость обеспечивается пространственными рамными каркасами как с поперечным или продольным расположением ригелей, так и безригельными.
Выбор конструктивной схемы осуществляют с учетом конкретных нагрузок и воздействий на здание, а также в соответствии с функциональными, экономическими и эстетическими требованиями. Наиболее предпочтительной является каркасная система с поперечным расположением ригелей, при которой в поперечном направлении образуются рамы, которые совместно со связями обеспечивают пространственную жесткость и устойчивость здания и позволяют, изменяя шаг колонн, обеспечивать гибкость планировочного решения внутреннего пространства здания. Каркасные системы – основной тип промышленных зданий, так как в них действуют большие сосредоточенные нагрузки, удары, сотрясения от технологического оборудования и кранов.
В бескаркасных зданиях размещают небольшие цеха с пролетами шириной до 12 м, высотой до 6 м и кранами грузоподъемностью до 50 кН. В местах опирания стропильных конструкций стены с внутренних сторон усиливают пилястрами. Многоэтажные промышленные здания по бескаркасной системе строят очень редко.
Производственные здания с неполным каркасом проектируют под небольшие нагрузки: бескрановыми с Q

Внутрицеховое подъемно-транспортное оборудование


Технологический процесс требует перемещения внутри здания сырья, полуфабрикатов, готовой продукции и т.п. Применяемое при этом подъемно-транспортное оборудование необходимо не только с точки зрения технологии производства, но и для облегчения труда, а также для монтажа и демонтажа технологических агрегатов.
Внутрицеховое подъемно-транспортное оборудование делят на 2 группы:
— периодического действия;
— непрерывного действия.
К первой группе относят мостовые краны, подвесной и напольный транспорт. Вторая группа включает: конвейеры (ленточные, пластинчатые, скребковые, ковшовые, подвесные цепные), нории, рольганги и шнеки.
В основном в промышленных зданиях применяют мостовые и подвесные краны. Они обслуживают достаточно большую площадь цеха и перемещаются в трех направлениях.
Подвесные краны имеют грузоподъемность от 2,5 до 50 кН, редко до 200 кН и состоят из легкого моста или несущей балки, двух- или четырехкатковых механизмов передвижения по подвесным путям и электротали, которая перемещается по нижней полке мостовой балки (рис.2).


Рис. 2. Основные параметры подвесных однобалочных кранов

По ширине пролета устанавливают один или несколько кранов в зависимости от ширины пролета, шага несущих конструкций покрытия, грузоподъемности. По количеству путей подвесные краны могут одно-, двух- и многопролетными. Управление кранами осуществляют с пола цеха (ручные) или из кабины, подвешенной к мосту.
Мостовые краны имеют грузоподъемность от 30 до 5000 кН. В в основном применяются краны грузоподъемностью от 59 до 300 кН.
Мостовой кран состоит из несущего моста, перекрывающего рабочий пролет помещения, механизмов передвижения вдоль подкрановых путей и передвигающейся вдоль моста тележки с механизмом подъема.
Несущий мост выполняют в виде пространственных четырехплоскостных коробчатых балочных или ферменных конструкций. Краны перемещаются по рельсам, уложенным по подкрановым балкам, опирающимся на консоли колонн. Управляют мостовыми кранами из подвешенной к мосту кабины или с пола цеха (краны с ручным управлением).
Грузоподъемность, габариты и основные параметры мостовых кранов также как и подвесных определены ГОСТами (рис.3).


Рис. 3. Основные параметры пролетов с мостовыми кранами
В зависимости от продолжительности работы в единицу времени эксплуатации цеха мостовые краны подразделяют на краны тяжелого режима работы (Киспольз. ≥ 0,4), среднего режима (Киспольз. = 0,25 – 0,4) и легкого режима (Киспольз. = 0,15 – 0,25).
В одном пролете можно устанавливать два или несколько кранов, располагаемых как в одном, так и в двух уровнях цеха.
Очень часто объемно-планировочное и конструктивное решения промышленных зданий определяются наличием и характеристиками кранового оборудования. Проектировщики стремятся уменьшить грузоподъемность кранов или вообще освободить каркас здания от крановых нагрузок. Так как это позволяет уменьшить сечения колонн и размеры фундаментов, избавиться от устройства подкрановых путей и получить возможность применения укрупненной сетки колонн.
Технологические процессы в зданиях без кранов обслуживают напольным транспортом. К ним относят вагонетки, рольганги, автомобильные краны и погрузчики.
В для перемещения громоздких и тяжелых грузов целесообразно применять козловые и полукозловые краны, передвигающиеся по уложенным в уровне пола цеха рельсам. Одной опорой полукозлового крана является подкрановый путь. При замене мостовых кранов козловыми требуется увеличение пролета и высоты здания. Так, для пролетов 12 и 15 м такие увеличения пролета и высоты должны составлять, соответственно, 3 м и 1,6 м, а для пролета 18 м — соответственно 6 и 3 м. Однако, отказ от мостовых кранов в одноэтажных зданиях приводит к значительному экономическому эффекту, т.к. снятие крановых нагрузок с каркаса помимо экономии материалов открывает возможности создания легких большепролетных зданий с пространственными системами покрытий.

Кто на , тот самым умным оказался!

Объемно-планировочное решение здания (ОПР) Расположение (компоновка) помещений

Расположение (компоновка) помещений заданных размеров и формы в едином комплексе, подчиненное функциональным, техническим, архитектурно-художественным и экономическим требованиям, называется объемно-планировочным решением здания (ОПР) .

Весь внутренний объем здания разделяется горизонтальными (междуэтажными перекрытиями) и вертикальными (стенами и перегородками) конструкциями на отдельные помещения.

Помещения по способу их связи между собой могут быть непроходными (изолированными) и проходными (неизолированными). Непроходные помещения сообщаются между собой с помощью третьего помещения, обычно одного из коммуникационных (коридора, лестничной клетки и др.).

По признакам расположения и взаимосвязи помещений различают несколько объемно-планировочных систем зданий:

анфиладная ;

система с горизонтальными коммуникационными помещениями ;

зальная ;

атриумная ;

секционная ;

смешанная (комбинированная ).

Если помещения соединяются друг с другом непосредственно через проемы в стенах или перегородках, то такой прием называется анфиладной системой планировки (см. рис. 2.1). Эта система позволяет создать здание очень компактной и экономичной структуры в связи с отсутствием (или минимальным объемом) коммуникационных помещений. Все основные помещения в здании при анфиладной системе являются проходными, поэтому она применима лишь в зданиях преимущественно экспозиционного характера (музеях, картинных галереях, выставочных павильонах), либо частично в отдельных элементах здания, например, между помещениями одной воспитательной группы в детском дошкольном помещении.

Рис. 2.1. Анфиладная система планировки

Система с горизонтальными коммуникационными помещениями предусматривает связь между основными помещениями здания через коммуникационные помещения (коридоры, открытые галереи). Это позволяет основные помещения проектировать непроходными. При этом помещения могут быть расположены по одну (рис. 2.2 а ) или по обе стороны коридора (рис. 2.2 б ). При одностороннем расположении помещений коридор имеет хорошую освещенность естественным светом, которая в некоторых случаях необходима, например, в школах, где коридор одновременно служит в качестве рекреационного помещения.

Рис. 2.2. Система планировки с горизонтальными коммуникационными помещениями

а – галерейная; б – коридорная

1 – открытая галерея; 2 – закрытый коридор; 3 – рабочие или жилые помещения

Планировочная компактность и экономичность решения здания с горизонтальными коммуникациями оценивается количеством площади основных и вспомогательных помещений здания на единицу площади или длины коммуникационных помещений. По этому признаку наиболее экономичны схемы с двумя параллельными или кольцевыми коридорами. Системы планировки с горизонтальными коммуникационными помещениями широко применяется в проектировании гражданских зданий самого различного назначения – общежитий, гостиниц, школ, больниц, административных зданий и т.п.

Недостатком одностороннего расположения помещений является увеличение подсобной площади в здании и периметра наружных стен, что ухудшает экономическую характеристику объемно-планировочного решения.


Зальная система планировки предусматривает одно большое (главное) помещение здания, как правило, определяющее его функциональное назначение (кинозал, спортивный зал и т.п.), вокруг которого группируются остальные необходимые помещения (см. рис. 2.3). Наиболее распространена эта система при проектировании зрелищных, спортивных и торговых зданий. Зальную систему применяют для зданий с одним или несколькими залами.

Рис. 2.3. Зальная система планировки

Атриумная система – с открытым или крытым двором (атриумом), вокруг которого размещены основные помещения, связанные с ним непосредственно через открытые (галереи) или закрытые (боковые коридоры) коммуникационные помещения (см. рис. 2.4).

Рис. 2.4. Атриумная система планировки

1 – атриум; 2 – коммуникационные помещения

Помимо традиционного использования в южном жилище она широко применяется в проектировании малоэтажных зданий с крупными залами (крытых рынках, музеях, выставочных комплексов, школ), а также многоэтажных гостиниц и административных помещений.

Преимущества этой системы при открытых дворах – тесная связь между необходимыми по технологической схеме открытыми и закрытыми пространствами (в здании рынка – связь между торговыми залами и пространством сезонной торговли, в здании музея – между закрытой и открытой экспозицией).

Преимущества атриумной системы при закрытых дворах – создание круглогодично функционирующих общественных пространств и повышение теплоэкономичности здания в целом.

Секционная система заключается в компоновке здания из одного или нескольких однохарактерных фрагментов (секций) с повторяющимися поэтажными планами, причем помещения всех этажей каждой секции связаны общими вертикальными коммуникациями – лестницей или лестницей и лифтами. Секционная система – основная в проектировании многоквартирных жилых домов средней и повышенной этажности, отдельные фрагменты этой системы включаются в объемно-планировочную структуру зданий общежитий, больниц, некоторых административных помещений и др.

Рис. 2.5. Секционная система планировки

1 – блок-секции; 2 – вертикальные коммуникации (лестнично-лифтовые узлы)

Некоторые многофункциональные здания имеют смешанную систему планировки , поскольку в здании объединяются помещения для различных функциональных процессов (главных и подсобных). Так, например, в здании крупного физкультурно-оздоровительного комплекса зальная система спортивных залов сочетается с коридорной планировкой помещений для занятий в спортивных секциях и кружках (см. рис. 2.6).


Рис. 2.6. Смешанная система планировки

1 – зальная система; 2 – коридорная система


Как правило, требованиям удобства отвечает наиболее компактное размещение помещений с кратчайшими путями движения людей и средств транспорта, без взаимных их пересечений и встречного движения. Чем короче пути движения и, следовательно, меньше по площади коммуникационные помещения, тем меньше объем здания и ниже его стоимость.

Помещения, связанные функциональным или технологическим процессом, должны располагаться возможно ближе друг к другу. Это условие особенно важно для производственных предприятий, где протяженность путей движения предметов производства влияет не только на объем здания, но и на стоимость продукции. Не менее важно для производственных и общественных зданий отсутствие пересечений людских потоков, а пересечение людских потоков с грузовыми вообще недопустимо как по технологическим условиям, так и по условиям безопасности.

Разработка объемно-планировочного решения (ОПР) осуществляется на основе схемы функциональных процессов, происходящих в здании (функциональной илитехнологической схемы ). Она представляет собой условное графическое изображение группировки помещений и функциональных связей между ними. Например, в здании театра помещения группируются, как правило, по однородным функциональным признакам. Артистические помещения группируются близ сцены, с которой должна быть обеспечена удобная связь, а к зрительному залу примыкают фойе и кулуары, представляющие группу помещений с однородным функциональным процессом (см. рис. 2.7).

При значительной сложности составления (например, при проектировании промышленных зданий со сложным технологическим процессом – сборочных конвейеров автозаводов и т.п.) функциональная или технологическая схема разрабатывается специалистом-технологом совместно с архитектором.


Рис. 2.7. Функциональная схема здания театра

При группировке помещений согласно функциональной схеме и определении целесообразных связей между ними параллельно выявляют целесообразность организации связей по горизонтали или по вертикали в соответствии с выбранной этажностью.

Проектирование здания, т.е. компоновку помещений, удобно вести, пользуясь сеткой разбивочных осей. Размеры пролетов и шагов определяются, сообразуясь с размерами и желательными пропорциями помещений и размерами (по каталогу) типовых несущих конструкций перекрытий и покрытий. Затем, учитывая заданную площадь помещений, намечается их размещение.

Основная форма помещений в плане – прямоугольная, хотя возможны и другие, более сложные формы. Компоновка помещений должна отвечать функциональным, техническим, архитектурно-художественным и экономическим требованиям.

Форма здания в плане обычно также прямоугольная или состоит из нескольких связанных между собой прямоугольных частей. Возможны и другие сложные формы. Например, для общественных зданий с залами форма плана и здания в целом определяется особенностями функционального процесса.

Объемное решение, являющееся основой архитектурной композиции здания, определяется его формой в плане, а также количеством этажей и формой покрытия.

Этажность здания зависит от его назначения, экономических соображений, градостроительных требований и природных данных строительной площадки. В том случае, когда функциональный процесс может осуществляться в любых зданиях, этажность выбирается на основании сопоставления вариантов сих технической, экономической и архитектурно-художественной оценкой.

Малая этажность зданий школ, детских садов-яслей обусловлена, например, стремлением максимально избежать передвижения детей по лестницам. Кинотеатры, магазины, музеи, вокзалы и т.п. целесообраз­но размещать в зданиях малой этажности, чтобы не затруднять людей хождением по лестницам, облегчить эвакуацию людей в случае пожара, не создавать больших нагрузок на перекрытия. Производственные цехи с тяжелым и громоздким оборудованием или установками, вызывающими динамические нагрузки, желательно располагать в одноэтажных зданиях.

Нередко этажность здания зависит от этажности соседних построек или утвержденной генеральным планом застройки данного района города для достижения его архитектурного единства (здания должны находиться в контексте с окружающей застройкой).

На выбор этажности также влияют местные усло­вия: рельеф площадки, гидрогеологические характеристики грунтов. При рельефе с большими уклонами, а также при слабых грунтах целесообразно повышение этажности, чтобы уменьшить затраты на земляные работы и на устройство фундаментов. Одноэтажные здания с большими размера­ми в плане в целях уменьшения объема земляных работ целесообразно располагать только на площадках с пологим рельефом.

При проектировании многоэтажного здания помещения обычно группируются с учетом предполагаемой этажности так, чтобы площади этажей были одинаковы.

Многие здания независимо от назначения имеют однотипные отдельные помещения и их группы – архитектурно-планировочные элементы (главный вход в здание, лестница, транспортные узлы, санитарно-технические узлы). Их планировочное решение и размещение в здании оказывает существенное влияние на компоновку плана здания в целом.

Каждое здание, как правило, имеет главный вход и обычно несколько второстепенных (служебных ) входов . Через главный вход проходят основные массы людей, участвующих в функциональном процессе; второстепенные входы обычно обслуживают подсобные функциональные процессы, а также являются запасными эвакуационными выходами.

Главный вход в здание должен быть хорошо виден при приближении к нему. Входная площадка обычно защищается навесом от атмосферных осадков. Для защиты от проникания холодного воздуха у наружных дверей устраиваются небольшие помещения – тамбуры . Для климатической зоны, в которой находится Нижегородская область, достаточно применение обычного одинарного тамбура. Для северных регионов (при более низкой температуре наиболее холодной зимней пятидневки) обязательно применение двойного тамбура. Более подробно эти требования для жилых, общественных и промышленных зданий будут рассмотрены в соответствующих курсах.

Далее располагается вестибюль и гардероб . Вестибюль – это коммуникационное помещение с распределительными функциями, откуда потоки людей направляются в коридоры, на лестницы, к подъемникам. Площадь гардероба и вестибюля зависит от количества пользующихся ими людей. При входном узле обычно располагаются некоторые помещения обслуживающего назначения (комнаты охраны , торговые киоски , санитарные узлы и т.п.).

Для сообщения между этажами здания устраиваются лестницы и подъемники периодического (лифты ) или непрерывного (эскалаторы ) действия. В зданиях с большими людскими потоками применяются эскалаторы, т.е. движущиеся лестницы, а вместо лестниц – пандусы , т.е. наклонные пологие поверхности без ступеней.

Лестница, по которой направляется основной поток людей, считается главной и отличается от других лестниц большими размерами и меньшим уклоном. Остальные лестницы называются второстепенными и служебными (если связаны с подсобным функциональным процессом). Ширина лестничных маршей и лестничных площадок зависит от этажности, значимости лестницы и числа пользующихся лестницей. Для безопасности движения ширина марша основных эвакуационных лестниц должна быть не менее 1,05 м в секционных жилых домах, не менее 1,2 м – в коридорных жилых домах, не менее 1,35 м – в общественных зданиях. Во всех случаях ширина лестничной площадки не должна быть меньше ширины марша.

Уклон лестничных маршей (отношение вертикальной проекции марша к горизонтальной) зависит от количества этажей, значимости лестницы и принимается 1:2 ? 1:1,75. Этим уклонам соответствуют и размеры ступеней: высота (подступенок ) 160 ? 165 мм; ширина (проступь ) 300 ? 290 мм.

Пологие марши следует проектировать в лестницах многоэтажных зданий и на главных лестницах, а более крутые марши предусматриваются в малоэтажных зданиях и второстепенных лестницах. Для безопасности в случае пожара в многоэтажном здании должно быть не менее двух лестниц, заключенных в лестничные клетки, освещенные естественным светом и имеющие наружные выходы. Расстояния от наиболее удаленных помещений до эвакуационной лестницы или наружного выхода имеют строгие нормативные ограничения в зависимости от типа здания, его этажности, степени огнестойкости и др.

Наиболее распространенные и экономичные двухмаршевые лестницы. Однако могут быть и другие типы лестниц, например трехмаршевые, в которых в пределах этажа размещаются три марша, многомаршевые с различным расположением маршей, круглые (винтовые) лестницы. Более подробно конструктивное исполнение лестниц рассмотрено во второй главе данного Пособия.

Во всех зданиях, имеющих более 5 этажей, устраиваются лифты, как правило, располагаемые в пределах лестничной клетки или близ нее.

Расположение лестничных клеток и шахт лифтов в значительной степени влияет на планировку, поскольку они должны занимать одно и то же относительное положение в плане каждого этажа здания.

На планировку этажей влияет также положение санитарных узлов, кухонь и других помещений, которые всегда располагаются в этажах по одной вертикали друг над другом. Такое расположение значительно облегчает разводку в здании трубопроводов водоснабжения, газа и канализации. Кроме того, «мокрые» помещения (т.е. помещения, в которых возможна повышенная влажность воздуха и намокание конструкций) размещаются в здания компактно, чтобы не оказывать вредного влияния на другие помещения. Нежелательно также расположение «мокрых» помещений у наружных стен здания.

Вертикальные несущие конструкции (стены и колонны), так же как лестницы и шахты лифтов, должны пересекать все этажи, занимая одно и то же место в плане на каждом этаже. Только в отдельных случаях несущие стены и столбы верхних этажей могут опираться на горизонтальные несущие конструкции. Поэтому помещения с большими пролетами целесообразно располагать в верхних этажах или выносить их в одноэтажные части здания, чтобы не опирать на перекрытие большого пролета конструкции верхнего этажа.

Таким образом, экономичное решение конструктивной схемы оказывает существенное влияние и на общее планировочное решение здания.

Однако ведущим фактором в проектировании здания, определяющим его объемно-планировочное решение, остается функциональный процесс. Новые функциональные процессы или изменения существующих процессов обуславливают появление новых объемно-планировочных и конструктивных решений зданий.

На объемно-планировочное решение оказывают влияние и природные условия, в которых будет возводиться здание. Суровый климат предопределяет компактные объемы зданий с минимальной площадью наружных ограждений. В теплом климате, наоборот, целесообразны усложненные объемы зданий, дающие больше тени, способствующие связи помещений здания с окружающей природой.

Похожие статьи